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Motivations

1 OpenFlow'platform-agnostic programmatic interface permits
to dynamically update match/action forwarding rulesly via
the explicit involvement of an external controller

1 OpenFlowdoes not permit to deploy forwarding behaviors
directly in the switchesi.e. describe how rules should evolve in
time as a consequence of packevel events

1 Such static nature of th®penFlowlorwarding abstraction
raises serious concerns regarding:

| Scalability
i Latency
1 Security/reliability

Details in G. Bianchi, NBonolg A. Capone, Cascong
0OpenState: programming platformndependentstateful OpenFlowapplications inside the switch X

ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.



Stateless vstatefulin SDN

Stateless data plane model Stateful data plane model
(e.g.OpenFlow (e.g.OperState)
Controller SMART! Controller SMART!
Global + local states phyt Slow! Global states
Event Control Control
notifications enforcing delegation
Auto-adaption
. DUMB! e SMART!
Stateless Local states
: : Signalling& latency.
i')%nall"lqg‘():\a‘tencﬁ (t)(llogn@? update forwarding rules in 1 packet tinge
ms = PACKELS 10S 196ps 3ns@ 40B x 10Gbps



BeyondOpenState

Mealy Machine:

nice but insufficient! Flow Processing

State alone insufficient | ¢ Flow processingequires
memaory, registries,

counters etc

OpenFlow(forwarding) C Flow processingequires
actions aransufficient operations(compare, add,
shift, etc)
No flow processing C Processing = CPU

cannot afford any ordinary
CPUs at ns time scales wire
speed!




Open Packet Processor

{ From mealy finite state machines(FSMHExtended finite
state machines(XFSM)
1 An EFSM is a finite state machine in which:

1) state transitiongdependsalso on a set of triggering
conditionsdepending on data variables;

2) state transitiongrigger the updateof data variables
1 It also allowsrossflow state modification.

{ Hard parts use platform agnostic abstractions and make it
run at wire speed no CPUs

Details inG. Bianchi, MBonolg S. Pontarelli, Banvitg A. Capone,
0Open Packet Processor: a programmable architecture for wire speed platiodependentstateful
in-network processing arXivpreprint arXiv:1605.01977, 2016.
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Open Packet Processor: workflow
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Open Packet Processor: workflow

Per flow reqgisters programmerdefined
(like variables in a program)
e.g.. custom statistics, traffic features,

etc, Updated packet by packet
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Open Packet Processor: workflow

Userprogrammed set of comparators.
Compares pairs of quantities among
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Pkt

Open Packet Processor: workflow
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Open Packet Processor: workflow
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Controller still in chargel 2 WLINE I NI Y Q

But
stateful control tasks down in the switches

Controller o
Several applications

MBSO A Traffic policing
i . A Classifiers
A DoSmitigation
e A Fault tolerance and

E E/ forwarding HW E fast failover
Smart . A Data driven routing

forwarding HW A Security/monitoring
A Statefulfirewall

Smart

forwarding HW - Smart

] forwarding HW




NetFPGArototype

HW proof of concept implementation



Prototype architecture
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Prototype architecture

Imermo

nf 10ge interface:
Four ingress queues collect the packet

coming from the ingress ports

iInput_arbiter: A 4input 1-output mixer
block aggregates the packets using a roun
robin policy. The output of the mixer is a 32(

- ! bits data bus able to provide an overall
throughput of 50Gbps
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Prototype architecture
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The lookup and update ndition
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read/update the state table. d-left hash table (4k entries, MHT without
The 128 bit output is given as moving capability) and a small TCAM (32
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Prototype architecture
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Prototype architecture
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Prototype architecture

Flow Update logic block
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Prototype architecture
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TCAMbased packet processing engine

C Extreme flexibility!
A-C{a WLINRPINIQYAQ |ftY2al Tt SEAOI
A can define variables, store and change values, compute feateies,
¢ Guaranteed wire speed!

A Fixed time petpacket computational loop
A 6 clock cycles in our ongoing HW design

C (currently two tech limitations)

AOnly 1 ALU operation per each packgtpipelined ALU arrays
possible, butvould increase processing timend yield more
complex configuration

A ALUs only in updatenot in conditionsd does not permit conditions
such agR1+R2>100)

A Solution (not nice, but workaround): compute R1#RR3 during
previous packet, then use (R3>100)



DEMO

LOAD BALANCING, floansistent



Demo high level description
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Demo detailed deployment

ninaeth4 PowerEdge
web virtual host 1 10abe eth4
on 10.0.0.2:80 J web client 1
NetFPGA
OPPP0C
ninaeth5 PowerEdge
web virtual host 2 10gbe eth5
on 10.0.0.3:80 web client 2




Configuring théNetFPGA



