oooooooooooooooo
(l
per le telecomunicazioni

Universita di Roma

Open Packet Processor:

Platformagnostic Behavioral Forwarding
and StatefulFlow Processing at wire spe

ValerioBruschE / bL¢K'! YA OGS NEeai® 2F w?2

Joint work with: G. Bianchi, MBonolg S.Pontarellj A. Capone, C. Cascone Janvito

EU support:

\UPERFLL\D\TV

Sebq

BEhavioural BAsed forwarding

Approach proposed

Statefuldata plane

Background

OpenFlowSDN @009)

APIto the Controller
data plane I
(e.g.,OpenFlow n

7\
7/
\\;\, - ‘\ Forwarding Rules
g \ Set of match/action
/ \ packets must match

! _ (STATIC RULES)
Switch \\‘
:
Switch

Dumb switch need to ask controller if
something changes

OpenStatéSDN (2014)

Controller

/1

e , T Forwarding Behavior
Set of match/action

/ packets must match
~ 7 A How rules should

/ change or adapt to
/ events

Switch

Smart switch can dynamically update

flow tables

Motivations

1 OpenFlow'platform-agnostic programmatic interface permits
to dynamically update match/action forwarding rulesly via
the explicit involvement of an external controller

1 OpenFlowdoes not permit to deploy forwarding behaviors
directly in the switchesi.e. describe how rules should evolve in
time as a consequence of packevel events

1 Such static nature of th®penFlowlorwarding abstraction
raises serious concerns regarding:

| Scalability
i Latency
1 Security/reliability

Details in G. Bianchi, NBonolg A. Capone, Cascong
0OpenState: programming platformndependentstateful OpenFlowapplications inside the switch X

ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.

Stateless vstatefulin SDN

Stateless data plane model Stateful data plane model
(e.g.OpenFlow (e.g.OperState)
Controller SMART! Controller SMART!
Global + local states phyt Slow! Global states
Event Control Control
notifications enforcing delegation
Auto-adaption
. DUMB! e SMART!
Stateless Local states
: : Signalling& latency.
i')%nall"lqg‘():\a‘tencﬁ (t)(llogn@? update forwarding rules in 1 packet tinge
ms = PACKELS 10S 196ps 3ns@ 40B x 10Gbps

BeyondOpenState

Mealy Machine:

nice but insufficient! Flow Processing

State alone insufficient | ¢ Flow processingequires
memaory, registries,

counters etc

OpenFlow(forwarding) C Flow processingequires
actions aransufficient operations(compare, add,
shift, etc)
No flow processing C Processing = CPU

cannot afford any ordinary
CPUs at ns time scales wire
speed!

Open Packet Processor

{ From mealy finite state machines(FSMHExtended finite
state machines(XFSM)
1 An EFSM is a finite state machine in which:

1) state transitiongdependsalso on a set of triggering
conditionsdepending on data variables;

2) state transitiongrigger the updateof data variables
1 It also allowsrossflow state modification.

{ Hard parts use platform agnostic abstractions and make it
run at wire speed no CPUs

Details inG. Bianchi, MBonolg S. Pontarelli, Banvitg A. Capone,
0Open Packet Processor: a programmable architecture for wire speed platiodependentstateful
in-network processing arXivpreprint arXiv:1605.01977, 2016.

Pkt

Open Packet Processor: workflow

Stage
1

Flow context table

Lookup
key
extractor

Pkt,

FK
FK

state

Ro

R,|...

R

=

o
>

Stage
2

Stage
4

FK, state, R’

Update logic
block

Array of ALU

G
—

pkt, FK, state

Update key
extractor

t

Stage
3

XFSM table
Condition
block MATCH ACTIONS
PktState, R | progr | Co |Pkt,state, Clg, | o, |... o | state | PACKEL | next | packel | update | 4 actions
> Boolean | | m fields | state | actions |functions >
S Cq .
G circuitry .
A "] H
Cn
‘RG .
= next_state, update_functions
Global Data %
Variables
Go |Gy ... |Gy Flow-specific Global-shared

| A
\

[[|
2 Re Go, Gy, .y G >

RegistriesD =R\W G =< Ry, Ry, .

Open Packet Processor: workflow

Per flow reqgisters programmerdefined
(like variables in a program)
e.g.. custom statistics, traffic features,

etc, Updated packet by packet

Pkt FK Pkt State, R pkt, actions

p—-

v

Boolean
| circuitry

e}
o

FK, state, R’

Global registers: common to
PiL, FK state multiple flows; Can be updated b

multiple flowsc like a global
variable in a SW program

Open Packet Processor: workflow

Userprogrammed set of comparators.
Compares pairs of quantities among

registries, global variables, and packet
header fields, using useselected >, <, =,
<=, >= comparatorseturns 0/1 vector

age
2/
Pkt’ -
Pkt FK PktState,R | Pprogr | G

Stage
3

pkt, actions
—_—

A

Boolean
G | circuitry

I

FK, state, R’
G next_state, update_functions
4 =
Array of ALU
pkt, FK, state ONAltic s a U 0 0
C 0 C 9 JC ol 10 c 0

Pkt

Open Packet Processor: workflow

Lookup
key
extractor

9 0 Ol a4 4O AN E
0 8 0 E 0 De applied
Instruction Type Instructions note
Logic ALU NOP, AND, OR, standard logic
Instruction XOR, NOT operations
Arithmetic ALU ADDADC, standard arithmetic Stage
Sta Instruction SUB,SBCMUL operations 3
1 Shift /Rotate LSL (Logical Shift Left) performs logic and
Instruction LSR (Logical Shift Right) arithmetic shift /rotate M table
ASR (Arithmetic Shift Right) operations ACTIONS
Pkt, = ROR (Rotate Right)
FK pkt /flow specific ewmal(),avg() std() compute specific L | update | it actions
> Instruction pkt/flow task S functions >
FK, state, R’ :
Update logic ‘R.G
Stage block o T next_state, update_functions
4 S | Global Data %
Array of ALU Variables

Update key
extractor

t

|

A

[
Registries D =R\ G =< Ry, Ry,

| |
s Ry G, Gy, oy Gy >

Open Packet Processor: workflow

at Update mayv diffe
om lookup. for bidirectional flo

Pkt

pkt, actions
> Boolean

E——
G| circui G
W 2| circuitry
| |
FK, state, R’ :
‘RG _
G . next_state, update_functions
4 S
Array of ALU
» a a a a
pkt, FK, SR array or A hared
0 C c C =10
Extension > G. >
1 0 0 and updates releve ’=h
egISte O alSO s -

hdSNI ff OAEAAZ2YVY

Controller still in chargel 2 WLINE I NI Y Q

But
stateful control tasks down in the switches

Controller o
Several applications

MBSO A Traffic policing
i . A Classifiers
A DoSmitigation
e A Fault tolerance and

E E/ forwarding HW E fast failover
Smart . A Data driven routing

forwarding HW A Security/monitoring
A Statefulfirewall

Smart

forwarding HW - Smart

] forwarding HW

NetFPGArototype

HW proof of concept implementation

Prototype architecture

Mixer

bodydy d

Ingress queues

communication

Update logic block

r

Update information

TCAM
(XFSM table)

Action
Block

action

)

egress queues

] Flow o
) PKT fields context
extractors memory
Flow
registers
state
Metadata |=—3 -
. condition
condition
. vector
logic
Global block N
registers - -
8 PKT
—
delay queue Configuration OFP
commands Status
UART o

microcontroller

Implemented in a
NetFPG/AUMEVirtex 7

Prototype architecture

Imermo

nf 10ge interface:
Four ingress queues collect the packet

coming from the ingress ports

iInput_arbiter: A 4input 1-output mixer
block aggregates the packets using a roun
robin policy. The output of the mixer is a 32(

- ! bits data bus able to provide an overall
throughput of 50Gbps

(SR Global

egister

= A delay queue stores the packet
Ingress queues S e during the time need by the Open
on

Packet Processor tables to operate

Prototype architecture

Lookup
& mask

Flow
context

state

Look-up How
extractor registers

Lookup

PKT fields N

' extractors

The lookup and update ndition
extractor blocks that logic ‘-
build the keysthat are used to X9 The state table is realized by the
read/update the state table. d-left hash table (4k entries, MHT without
The 128 bit output is given as moving capability) and a small TCAM (32
input to the state lookup and . entries * 128 bits) and a companion SRA
update (configured as dual port RAM)
First TCAM only for static states (e.g.
packets belonging to a given subnet)

Prototype architecture

_ Flow ——— Update logic
> PKT fields L3 context
extractors memory
[Flow
lregisters
Metadata |—>
condition
logic
Global block
. -
registers

\ / action |_

§ Mixer

Prototype architecture

Flow € Update logic block RAM Set ALUnstructions
ontext
Nextstate
Update info RAM
TCAM

state

condition
uector TCAM RAM aCtlon
— (XFSM table)
PKT

The XFSM table is realized by the second TCAM/SH
ﬁguram}n‘[1 o pair. The TCAM has 128 entries * 160 bits and th

mmands

Status RAM store the next state, an action (if any) and a s
of ALU INSTRUCTIONS

g

microcontroller

Prototype architecture

Flow Update logic block

KT fields s

&

This block deploys amrray of ALUS
(Arithmetic and Logic Units) which support
specific set of (micro)instructions and whic Update infﬂrmati(D
execute in parallel the instructions provided

as output of the XFSM Table.
The updated registry values are stored in th§
memory locations (flow registries and/or &)
global registries)

)

action | Action §
L] Block

output queues vl 0 O: a
The action block applies the

,‘ selected actions and forward the | egress queues
packet to the output queues

—

Prototype architecture

Mixer

bdidy 4

Ingress queues

communication

. Flow |« Update logic block
> PKT fields context
extractors memory
Flow
registers Update information
state
Metadata |=3 .
T condition Each componeris memory mappedn the
logic address space handled by thieetFPGAwith
ol] the protocol AXlite.
Thus, prototype is configurable via
MicroBlazeor PClewhich can directly
read/write the content of these components
egress queues
delay queue Configuration OFP
commands Status
UART

microcontroller

TCAMbased packet processing engine

C Extreme flexibility!
A-C{a WLINRPINIQYAQ |ftY2al Tt SEAOI
A can define variables, store and change values, compute feateies,
¢ Guaranteed wire speed!

A Fixed time petpacket computational loop
A 6 clock cycles in our ongoing HW design

C (currently two tech limitations)

AOnly 1 ALU operation per each packgtpipelined ALU arrays
possible, butvould increase processing timend yield more
complex configuration

A ALUs only in updatenot in conditionsd does not permit conditions
such agR1+R2>100)

A Solution (not nice, but workaround): compute R1#RR3 during
previous packet, then use (R3>100)

DEMO

LOAD BALANCING, floansistent

Demo high level description

I p—
-~

Counter: 2

Demo detailed deployment

ninaeth4 PowerEdge
web virtual host 1 10abe eth4
on 10.0.0.2:80 J web client 1
NetFPGA
OPPP0C
ninaeth5 PowerEdge
web virtual host 2 10gbe eth5
on 10.0.0.3:80 web client 2

Configuring théNetFPGA

