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Approach proposed

Stateful data plane
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Motivations

* OpenFlow's platform-agnostic programmatic interface permits
to dynamically update match/action forwarding rules only via
the explicit involvement of an external controller

* OpenFlow does not permit to deploy forwarding behaviors
directly in the switches, i.e. describe how rules should evolve in
time as a consequence of packet-level events

* Such static nature of the OpenFlow forwarding abstraction
raises serious concerns regarding:

* Scalability
* Latency
- Security/reliability

Details in G. Bianchi, M. Bonola, A. Capone, C. Cascone,
“OpenState: programming platform-independent stateful OpenFlow applications inside the switch”,
ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.



Stateless vs. Stateful in SDN

Stateless data plane model
(e.g. OpenFlow)
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Beyond OpenState

Mealy Machine:

) ) .. Flow Processin
nice but insufficient! &

State alone is insufficient J Flow processing requires
memory, registries,

counters, etc

OpenFlow (forwarding) J Flow processing requires
actions are insufficient operations (compare, add,
shift, etc)
No flow processing  Processing = CPU!

cannot afford any ordinary
CPUs at ns time scales wire
speed!




Open Packet Processor

From mealy finite state machines(FSM) to Extended finite
state machines(XFSM)
An EFSM is a finite state machine in which:

1) state transitions depends also on a set of triggering
conditions depending on data variables;

2) state transitions trigger the update of data variables

It also allows cross-flow state modification.

Hard parts: use platform agnostic abstractions and make it
run at wire speed — no CPUs!

Details in G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone,
“Open Packet Processor: a programmable architecture for wire speed platform-independent stateful
in-network processing”, arXiv preprint arXiv:1605.01977, 2016.
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Open Packet Processor: workflow
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Open Packet Processor: workflow

Per flow registers: programmer-defined
(like variables in a program)
e.g.: custom statistics, traffic features,

etc; Updated packet by packet
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Open Packet Processor: workflow

User-programmed set of comparators.
Compares pairs of quantities among
registries, global variables, and packet

header fields, using user-selected >, <, =,
<=, >= comparators returns 0/1 vector
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Pkt

Open Packet Processor: workflow
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Open Packet Processor: workflow
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Overall vision: still “SDN”

Controller still in charge to ‘program’ the network

But
stateful control tasks down in the switches

Controller
Several applications

Network 05 * Traffic policing
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Smart Fault tolerance and

i forwarding HW fast failover
Smart ; g Data driven routing

forwarding HW Security/monitoring
Stateful firewall

Smart
forwarding HW
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NetFPGA prototype

HW proof of concept implementation



Prototype architecture
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Prototype architecture

Imermo

nf 10ge interface:
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Prototype architecture
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Prototype architecture
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Prototype architecture
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Prototype architecture

Flow Update logic block

KT fields s

&

This block deploys an array of ALUs
(Arithmetic and Logic Units) which support a
specific set of (micro)instructions and which Update infﬂrmati{D
execute in parallel the instructions provided

as output of the XFSM Table.
The updated registry values are stored in the
memory locations (flow registries and/or able)
global registries)

)

action | Action §
L] Block

output queues vl 0 O: a
The action block applies the

,‘ selected actions and forward the egress queues
packet to the output queues

—




Prototype architecture

Mixer

bdidy 4

Ingress queues

communication

Update logic block

Update information

Each component is memory mapped in the
address space handled by the NetFPGA with
the protocol AXI-lite.

Thus, prototype is configurable via
MicroBlaze or PCle which can directly
read/write the content of these components

egress queues

Flow
PKT fields <
—>! context
extractors memory
Flow
registers
state
Metadata |=—
condition
logic
Global block
. -_
registers
—
delay queue Configuration OFP
commands Status
UART

microcontroller




TCAM-based packet processing engine!

J Extreme flexibility!

* XFSM ‘programs’ almost flexible as ordinary programming language
* can define variables, store and change values, compute features, etc

J Guaranteed wire speed!

* Fixed time per-packet computational loop
* 6 clock cycles in our ongoing HW design

 (currently two tech limitations)

* Only 1 ALU operation per each packet —> pipelined ALU arrays
possible, but would increase processing time and yield more
complex configuration

* ALUs only in update, not in conditions = does not permit conditions
such as (R1+R2>100)

 Solution (not nice, but workaround): compute R1+R2 = R3 during
previous packet, then use (R3>100)



DEMO

LOAD BALANCING, flow-consistent



Demo high level description
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Demo detailed deployment

nina eth4 PowerEdge
web virtual host 1 10abe eth4
on 10.0.0.2:80 g web client 1
NetFPGA
OPP PoC
nina eth5 PowerEdge
web virtual host 2 10gbe eth5

on 10.0.0.3:80 web client 2




Configuring the NetFPGA

@PowerEdge-T310-1:

File Modifica Visualizza Terminale Schede Aiuto

valerio@PowerEdge—T310—1:~$




WEB client 1 get http://www.sosr-demo.eu




WEB client 2 get http://www.sosr-demo.eu
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web form history, cookies, and temporary internet files. However,
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Dumping Flow Context table

Insert 'l' to dump Flow Context table

1

searching on HT
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\ \
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Insert '1l' to dump Flow

Context table
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| 00000000
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Co0000B1
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Co0000B1
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Thank you!

Contact:
e Valerio.Bruschi@students.uniroma2.eu
* Valerio.Bruschi@cnit.it



