N\
consorzio nazionale
(]nl lL l interuniversitario
(: per le telecomunicazioni

Open Packet Processor:

Platform-agnostic Behavioral Forwarding
and Stateful Flow Processing at wire speed

Universita di Roma

Valerio Bruschi, CNIT/University of Rome “Tor Vergata”

Joint work with: G. Bianchi, M. Bonola, S. Pontarelli, A. Capone, C. Cascone, D. Sanvito.

EU support: ‘ ”
SUPERRLAIDITY

mi=jele

ral BAsed forwarding

Approach proposed

Stateful data plane

Background

OpenFlow/SDN (2009)

API to the Controller
data plane I
(e.g., OpenFlow) n

\ ® Setof match/action
, \ packets must match
N \\ (STATIC RULES)
\
Switch

7\
5;\, 2 |‘ K Forwarding Rules
/

\
\

|
v

Switch

Dumb switch: need to ask controller if
something changes

OpenState/SDN (2014)

Controller

|
/1

’ ,'I(Forwarding Behavior
v ; ®* Setof match/action

packets must match
- How rules should

/ change or adapt to
events

Switch

Smart switch: can dynamically update
flow tables

Motivations

* OpenFlow's platform-agnostic programmatic interface permits
to dynamically update match/action forwarding rules only via
the explicit involvement of an external controller

* OpenFlow does not permit to deploy forwarding behaviors
directly in the switches, i.e. describe how rules should evolve in
time as a consequence of packet-level events

* Such static nature of the OpenFlow forwarding abstraction
raises serious concerns regarding:

* Scalability
* Latency
- Security/reliability

Details in G. Bianchi, M. Bonola, A. Capone, C. Cascone,
“OpenState: programming platform-independent stateful OpenFlow applications inside the switch”,
ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.

Stateless vs. Stateful in SDN

Stateless data plane model
(e.g. OpenFlow)

Controller SMART!
Global + local states pbut Slow!

Event Control
notifications enforcing

Switch

|
Stateless DUMB:

Signalling & latency: O(100 ms)
100ms = 30M packets lost @ 100 gbps

Stateful data plane model
(e.g. OpenState)

Controller

SMART!
Global states
Control
delegation
Auto-adaption
Switch SMART!

Local states

Signalling & latency:
update forwarding rules in 1 packet time —
3 ns @ 40B x 100 Gbps

Beyond OpenState

Mealy Machine:

)) .. Flow Processin
nice but insufficient! &

State alone is insufficient J Flow processing requires
memory, registries,

counters, etc

OpenFlow (forwarding) J Flow processing requires
actions are insufficient operations (compare, add,
shift, etc)
No flow processing Processing = CPU!

cannot afford any ordinary
CPUs at ns time scales wire
speed!

Open Packet Processor

From mealy finite state machines(FSM) to Extended finite
state machines(XFSM)
An EFSM is a finite state machine in which:

1) state transitions depends also on a set of triggering
conditions depending on data variables;

2) state transitions trigger the update of data variables

It also allows cross-flow state modification.

Hard parts: use platform agnostic abstractions and make it
run at wire speed — no CPUs!

Details in G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone,
“Open Packet Processor: a programmable architecture for wire speed platform-independent stateful
in-network processing”, arXiv preprint arXiv:1605.01977, 2016.

Pkt

Open Packet Processor: workflow

Stage
1

Flow context table

Lookup
key
extractor

Pkt,

FK
FK

state |R,

R,|...

R

=

o
>

Stage
2

Stage
4

FK, state, R’

Update logic
block

Array of ALU

G
—

pkt, FK, state

Update key
extractor

t

Stage
3

XFSM table
Condition
block MATCH ACTIONS
Pkt State R c kt state. C packet | next | packet | update
- Bzgg;n o 1P - 5/ %] [Cm state | “helds | state | actions |functions
S Cq .
G circuitry .
A "] H
Cn
‘RG .
= next_state, update_functions
Global Data o
Variables
Go |Gy ... |Gy Flow-specific Global-shared

pkt, actions

>

RegistriesD =R\W G =< Ry, Ry, .

|

A

[

|} |
+ R Gp, Gy, oy G >

Open Packet Processor: workflow

Per flow registers: programmer-defined
(like variables in a program)
e.g.: custom statistics, traffic features,

etc; Updated packet by packet

Pkt pkt, actions

p—-

> Boolean
G | circuitry

FK, state, R’

'l'IQ

Array of ALU Global registers: common to

pkt, FK, state multiple flows; Can be updated by

multiple flows — like a global
variable in a SW program

Open Packet Processor: workflow

User-programmed set of comparators.
Compares pairs of quantities among
registries, global variables, and packet

header fields, using user-selected >, <, =,
<=, >= comparators returns 0/1 vector

Pkt,
FK

- Pkt,State, R

Pkt

o
>

G

FK, state, R’

'l'IQ

Array of ALU
pkt, FK, state

Progr.
Boolean

| circuitry

Stage
3

I

next_state, update_functions
ondaitio < a U 0
2ClOo o D DE PA TC

pkt, actions

p—-

Pkt

Open Packet Processor: workflow

Lookup
key
extractor

update | pyi actions

>

0 0 O d U0 C ols
O - O S O be applied
Instruction Type Instructions note
Logic ALU NOP, AND, OR, standard logic
Instruction XOR, NOT operations
Arithmetic ALU ADDADC, standard arithmetic Stage
Sta Instruction SUB,SBCMUL operations 3
1 Shift /Rotate LSL (Logical Shift Left) performs logic and
Instruction LSR (Logical Shift Right) | arithmetic shift/rotate M table
ASR (Arithmetic Shift Right) operations ACTIONS
Pkt, = ROR (Rotate Right)
FK pkt/flow specific ewmal().avg() std() compute specific t €
> Instruction pkt/flow task s functions
FK, state, R’ :
Update logic ‘R.G
Stage block o T next_state, update_functions
4 S | Global Data %
Array of ALU Variables

Update key
extractor

|

A

[
Registries D =R\ G =< Ry, Ry,

| |
s Ry G, Gy, oy Gy >

Open Packet Processor: workflow

3 & re oF 0
o = OLC C C U =

Pkt pkt, actions
—_—

” Boolean c
1

W G | circuitry
[cn

FK, state, R’
‘RG _
G . next_state, update_functions
4 S
Array of ALU
pkt, FK, = C C = C C O A = C C hared
C_Extension 2 LG >
0 0 and updates releva .
t
aYe - ' % . - A

Overall vision: still “SDN”

Controller still in charge to ‘program’ the network

But
stateful control tasks down in the switches

Controller
Several applications

Network 05 * Traffic policing

. Classifiers

DoS mitigation
Smart Fault tolerance and

i forwarding HW fast failover
Smart ; g Data driven routing

forwarding HW Security/monitoring
Stateful firewall

Smart
forwarding HW

e

] Smart
forwarding HW

NetFPGA prototype

HW proof of concept implementation

Prototype architecture

Mixer

bodydy d

Ingress queues

communication

Update logic block

r

Update information

TCAM
(XFSM table)

Action
Block

action

)

egress queues

] Flow s
) PKT fields context
extractors memory
Flow
registers
state
Metadata |=— -
. condition
condition
. vector
logic
Global block N
registers - i
8 PKT
i
delay queue Configuration OFP
commands Status
UART >

microcontroller

Implemented in a
NetFPGA SUME Virtex 7

Prototype architecture

Imermo

nf 10ge interface:
Four ingress queues collect the packets

coming from the ingress ports

condition

A SN input arbiter: A 4-input 1-output mixer
— block aggregates the packets using a round

robin policy. The output of the mixer is a 320
- bits data bus able to provide an overall
throughput of 50 Gbps

egister

'k - A delay queue stores the packet
Ingress queues deyu during the time need by the Open
on

Packet Processor tables to operate

Prototype architecture

Lookup
& mask

Flow
context

state

Look-up Flow
extractor registers

Lookup

PKT fields N

' extractors

The look-up and update
extractor blocks that

build the keys that are used to The state table is realized by the
read/update the state table. d-left hash table (4k entries, MHT without

The 128 bit output is given as moving capability) and a small TCAM (32
input to the state lookup and entries * 128 bits) and a companion SRAM

update (configured as dual port RAM)
First TCAM only for static states (e.g.
packets belonging to a given subnet)

Prototype architecture

_ Flow ——— Update logic
> PKT fields L3 context
extractors memory
[Flow
lregisters
Metadata |—>
condition
logic
Global block
: -
registers

\ / action |_

§ Mixer

Prototype architecture

ot Update logic block RAM Set ALU instructions
ontext
Next stat
Update info RAM ext state
TCAM

condition
uector TCAM RAM GCtIOn
— (XFSM table)

PKT

state

The XFSM table is realized by the second TCAM/SRAM
ﬁgumtimxl o pair. The TCAM has 128 entries * 160 bits and the

mmands

Status RAM store the next state, an action (if any) and a set
of ALU INSTRUCTIONS

g

microcontroller

Prototype architecture

Flow Update logic block

KT fields s

&

This block deploys an array of ALUs
(Arithmetic and Logic Units) which support a
specific set of (micro)instructions and which Update infﬂrmati{D
execute in parallel the instructions provided

as output of the XFSM Table.
The updated registry values are stored in the
memory locations (flow registries and/or able)
global registries)

)

action | Action §
L] Block

output queues vl 0 O: a
The action block applies the

,‘ selected actions and forward the egress queues
packet to the output queues

—

Prototype architecture

Mixer

bdidy 4

Ingress queues

communication

Update logic block

Update information

Each component is memory mapped in the
address space handled by the NetFPGA with
the protocol AXI-lite.

Thus, prototype is configurable via
MicroBlaze or PCle which can directly
read/write the content of these components

egress queues

Flow
PKT fields <
—>! context
extractors memory
Flow
registers
state
Metadata |=—
condition
logic
Global block
. -_
registers
—
delay queue Configuration OFP
commands Status
UART

microcontroller

TCAM-based packet processing engine!

J Extreme flexibility!

* XFSM ‘programs’ almost flexible as ordinary programming language
* can define variables, store and change values, compute features, etc

J Guaranteed wire speed!

* Fixed time per-packet computational loop
* 6 clock cycles in our ongoing HW design

 (currently two tech limitations)

* Only 1 ALU operation per each packet —> pipelined ALU arrays
possible, but would increase processing time and yield more
complex configuration

* ALUs only in update, not in conditions = does not permit conditions
such as (R1+R2>100)

 Solution (not nice, but workaround): compute R1+R2 = R3 during
previous packet, then use (R3>100)

DEMO

LOAD BALANCING, flow-consistent

Demo high level description

I p—
-~

Counter: 2

Demo detailed deployment

nina eth4 PowerEdge
web virtual host 1 10abe eth4
on 10.0.0.2:80 g web client 1
NetFPGA
OPP PoC
nina eth5 PowerEdge
web virtual host 2 10gbe eth5

on 10.0.0.3:80 web client 2

Configuring the NetFPGA

@PowerEdge-T310-1:

File Modifica Visualizza Terminale Schede Aiuto

valerio@PowerEdge—T310—1:~$

WEB client 1 get http://www.sosr-demo.eu

WEB client 2 get http://www.sosr-demo.eu

o¢ You're browsing pri... x | sp

Firefox | Sea orent \gares ¥ ear ﬁ E] ‘ ﬂ

O¢ You're browsing privately
Firefox won't remember any history for this window

That includes browsing history, search history, download history,
web form history, cookies, and temporary internet files. However,
files you download and bookmarks you make will be kept

While this computer won't have a record of your browsing history,
your employer or internet service provider can still track the pages

+

VyOou VIS

Dumping Flow Context table

Insert 'l' to dump Flow Context table

1

searching on HT

80103440:
80103480:
801034C0:
80105540:
80105560:

8010BB0OO:

\ \
{GZGGGBOII0@000000{5000D181I@@@O@@@@
02000001 00000000° 5000D2B1 00COOEE0

I 92000001 100000000! 5000D3B1 100000000
1 0200000A10000000601 D1B15000 100000000

| 0300000B100000000) D2B15000 100000000

OZGOOOOA:OGOOOOOO:D3815000 00000000
l |

DST & SRC
port

Insert '1l' to dump Flow

Context table

00000001
000EO000
06000000
00000000
00000000

| 00000000

00000018
00000015
00000007
OOOO00A7
00000072

00000000
00000000
00000000
00000000
00000000

Co0000B1
CO000OB2
Co0000B1
COO000AA
COOOOOAA

Thank you!

Contact:
e Valerio.Bruschi@students.uniroma2.eu
* Valerio.Bruschi@cnit.it

