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Approach proposed
Statefuldata plane 



OpenFlow/SDN (2009) OpenState/SDN (2014)
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Ҭ Forwarding Behavior
Å Set of match/action 

packets must match
Å How rules should 

change or adapt to 
events

ҬForwarding Rules
Å Set of match/action 

packets must match 
(STATIC RULES)

Dumb switch: need to ask controller if 
something changes

Smart switch: can dynamically update 
flow tables

APIto the 
data plane

(e.g., OpenFlow)



Motivations
¶OpenFlow'splatform-agnostic programmatic interface permits 

to dynamically update match/action forwarding rules only via 
the explicit involvement of an external controller

¶OpenFlowdoes not permit to deploy forwarding behaviors 
directly in the switches, i.e. describe how rules should evolve in 
time as a consequence of packet-level events

¶Such static nature of the OpenFlowforwarding abstraction 
raises serious concerns regarding:

¶Scalability

¶Latency

¶Security/reliability 

Details in G. Bianchi, M. Bonola, A. Capone, C. Cascone, 
άOpenState: programming platform-independent stateful OpenFlowapplications inside the switchέΣ
ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.



Stateless vs. Statefulin SDN

Switch
Stateless

Controller
Global + local states

Switch
Local states

Controller
Global states

Control
enforcing

Control
delegation

Stateless data plane model
(e.g. OpenFlow)

Stateful data plane model
(e.g. OpenState)

SMART!
but Slow!

DUMB! SMART!

SMART!

Auto-adaption

Event
notifications

Signalling& latency: O(100 ms)
100ms = 30M packets lost @ 100 gbps

Signalling& latency: 
update forwarding rules in 1 packet time ς
3 ns@ 40B x 100 Gbps



Mealy Machine: 
nice but insufficient!

ÇState alone is insufficient

ÇOpenFlow(forwarding) 
actions are insufficient

ÇNo flow processing

ÇFlow processing requires
memory, registries, 
counters, etc

ÇFlow processing requires
operations(compare, add, 
shift, etc)

ÇProcessing = CPU!
cannot afford any ordinary 
CPUs at ns time scales wire 
speed!

Beyond OpenState

Flow Processing



Open Packet Processor

¶From mealy finite state machines(FSM) to Extended finite 
state machines(XFSM)

¶An EFSM is a finite state machine in which:

1) state transitions dependsalso on a set of triggering 
conditionsdepending on data variables; 

2) state transitions trigger the update of data variables

¶It also allows cross-flow state modification.

¶Hard parts: use platform agnostic abstractions and make it 
run at wire speed ςno CPUs!

Details in G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone,
άOpen Packet Processor: a programmable architecture for wire speed platform-independent stateful
in-network processingέΣ arXivpreprint arXiv:1605.01977, 2016.



Open Packet Processor: workflow



Open Packet Processor: workflow

Per flow registers: programmer-defined 
(like variables in a program)

e.g.: custom statistics, traffic features, 
etc; Updated packet by packet

Global registers: common  to 
multiple flows;  Can be updated by 

multiple flows ςlike a global 
variable in a SW program



Open Packet Processor: workflow
User-programmed set of comparators.
Compares pairs of quantities among 

registries, global variables, and packet 
header fields, using user-selected >, <, =, 
<=, >= comparators; returns  0/1 vector

Condition results (a 0/1 bit string 
vector) can now be used for matching. 
wildcard permits to filter condition of 

interest for different states/events



Open Packet Processor: workflow

Returns microinstructions (of a domain-specific 
custom ALU instruction set) to be applied



Open Packet Processor: workflow

Next state & results written back into 
registers.  Note that Update may differ 

from lookup, for bidirectional flow 
handling

Parallel array of ALUs: executes (in 2 
clock cycles) all returned 

microinstructions and updates relevant 
registers.  IN/OUT also written in TCAM 

output - e.g. ADD(Ri, Gj) ҦRk



hǾŜǊŀƭƭ ǾƛǎƛƻƴΥ ǎǘƛƭƭ ά{5bέ

Smart 
forwarding HW

Smart 
forwarding HW

Smart 
forwarding HW

Network OS

Controller
Several applications
ÅTraffic policing
ÅClassifiers
ÅDoSmitigation
ÅFault tolerance and 

fast failover 
ÅData driven routing 
ÅSecurity/monitoring
ÅStatefulfirewall

Smart 
forwarding HW

Controller still in chargeǘƻ ΨǇǊƻƎǊŀƳΩ ǘƘŜ ƴŜǘǿƻǊƪ
But Ŏŀƴ ΨǇǳǎƘΩ time-critical / localized 

statefulcontrol tasks down in the switches



NetFPGAprototype
HW proof of concept implementation



Prototype architecture

Implemented in a 
NetFPGASUME Virtex 7



Prototype architecture

nf_10ge_interface:
Four ingress queues collect the packets 

coming from the ingress ports

input_arbiter: A 4-input 1-output mixer 
block aggregates the packets using a round 

robin policy. The output of the mixer is a 320 
bits data bus able to provide an overall 

throughput of 50 Gbps

A delay queue stores the packet 
during the time need by the Open 
Packet Processor tables to operate



Prototype architecture

The state table is realized by the 
d-left hash table (4k entries, MHT without 
moving capability) and a small TCAM (32 

entries * 128 bits) and a companion SRAM 
(configured as dual port RAM)

First TCAM only for static states (e.g. 
packets belonging to a given subnet)

The look-up and update 
extractor blocks that 

build the keys that are used to 
read/update the state table. 
The 128 bit output is given as 
input to the state lookup and 

update 

Look-up
extractor

D-left
Hash 
Table

TCAM
1

RAM
1Lookup

Lookup
& mask

state

Flow 
registers



Prototype architecture



Prototype architecture

The XFSM table is realized by the second TCAM/SRAM 
pair. The TCAM has 128  entries * 160 bits and the 

RAM store the next state, an action (if any) and a set 
of ALU INSTRUCTIONS

TCAM

RAM
2

RAM
4

RAM
3

Set ALU instructions

Nextstate

action



Prototype architecture

This block deploys an array of ALUs 
(Arithmetic and Logic Units) which support a 
specific set of (micro)instructions and which 
execute in parallel the instructions provided 

as output of the XFSM Table. 
The updated registry values are stored in the 

memory locations (flow registries and/or 
global registries)

output_queues_v1_0_0:
The action block applies the 

selected actions and forward the 
packet to the output queues



Prototype architecture

Each component is memory mapped in the 
address space handled by the NetFPGAwith 

the protocol AXI-lite.
Thus, prototype is configurable via 

MicroBlazeor PCIewhich can directly 
read/write the content of these components



TCAM-based packet processing engine!

ÇExtreme flexibility! 
Å·C{a ΨǇǊƻƎǊŀƳǎΩ ŀƭƳƻǎǘ ŦƭŜȄƛōƭŜ ŀǎ ƻǊŘƛƴŀǊȅ ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜ 
Åcan define variables, store and change values, compute features, etc

ÇGuaranteed wire speed!
ÅFixed time per-packet computational loop
Å6 clock cycles in our ongoing HW design

Ç (currently two tech limitations)
ÅOnly 1 ALU operation per each packet  Ą pipelined ALU arrays 

possible, but would increase processing time and yield more 
complex configuration
ÅALUs only in update, not in conditions Ą does not permit conditions 

such as (R1+R2>100)
ÅSolution (not nice, but workaround): compute R1+R2 ĄR3 during 

previous packet, then use (R3>100)



DEMO
LOAD BALANCING, flow-consistent



Demo high level description

Counter: 1Counter: 2



Demo detailed deployment

NetFPGA
OPP PoC

PowerEdge 
eth4

web client 1

PowerEdge 
eth5

web client 2

ninaeth4
web virtual host 1

on 10.0.0.2:80

PowerEdgeIntel i5 server nina Intel i5 server 

10gbe

10gbe

ninaeth5
web virtual host 2

on 10.0.0.3:80
10gbe

10gbe



Configuring the NetFPGA


