
Open Packet Processor:
Platform-agnostic Behavioral Forwarding
and StatefulFlow Processing at wire speed

Valerio BruschiΣ /bL¢κ¦ƴƛǾŜǊǎƛǘȅ ƻŦ wƻƳŜ ά¢ƻǊ Vergataέ

EU support:

Joint work with:G. Bianchi, M. Bonola, S. Pontarelli, A. Capone, C. Cascone, D. Sanvito.

Approach proposed
Statefuldata plane

OpenFlow/SDN (2009) OpenState/SDN (2014)

Background

Switch

Controller

Switch

Switch

Controller

Switch

Ҭ Forwarding Behavior
Å Set of match/action

packets must match
Å How rules should

change or adapt to
events

ҬForwarding Rules
Å Set of match/action

packets must match
(STATIC RULES)

Dumb switch: need to ask controller if
something changes

Smart switch: can dynamically update
flow tables

APIto the
data plane

(e.g., OpenFlow)

Motivations
¶OpenFlow'splatform-agnostic programmatic interface permits

to dynamically update match/action forwarding rules only via
the explicit involvement of an external controller

¶OpenFlowdoes not permit to deploy forwarding behaviors
directly in the switches, i.e. describe how rules should evolve in
time as a consequence of packet-level events

¶Such static nature of the OpenFlowforwarding abstraction
raises serious concerns regarding:

¶Scalability

¶Latency

¶Security/reliability

Details in G. Bianchi, M. Bonola, A. Capone, C. Cascone,
άOpenState: programming platform-independent stateful OpenFlowapplications inside the switchέΣ
ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, April 2014.

Stateless vs. Statefulin SDN

Switch
Stateless

Controller
Global + local states

Switch
Local states

Controller
Global states

Control
enforcing

Control
delegation

Stateless data plane model
(e.g. OpenFlow)

Stateful data plane model
(e.g. OpenState)

SMART!
but Slow!

DUMB! SMART!

SMART!

Auto-adaption

Event
notifications

Signalling& latency: O(100 ms)
100ms = 30M packets lost @ 100 gbps

Signalling& latency:
update forwarding rules in 1 packet time ς
3 ns@ 40B x 100 Gbps

Mealy Machine:
nice but insufficient!

ÇState alone is insufficient

ÇOpenFlow(forwarding)
actions are insufficient

ÇNo flow processing

ÇFlow processing requires
memory, registries,
counters, etc

ÇFlow processing requires
operations(compare, add,
shift, etc)

ÇProcessing = CPU!
cannot afford any ordinary
CPUs at ns time scales wire
speed!

Beyond OpenState

Flow Processing

Open Packet Processor

¶From mealy finite state machines(FSM) to Extended finite
state machines(XFSM)

¶An EFSM is a finite state machine in which:

1) state transitions dependsalso on a set of triggering
conditionsdepending on data variables;

2) state transitions trigger the update of data variables

¶It also allows cross-flow state modification.

¶Hard parts: use platform agnostic abstractions and make it
run at wire speed ςno CPUs!

Details in G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone,
άOpen Packet Processor: a programmable architecture for wire speed platform-independent stateful
in-network processingέΣ arXivpreprint arXiv:1605.01977, 2016.

Open Packet Processor: workflow

Open Packet Processor: workflow

Per flow registers: programmer-defined
(like variables in a program)

e.g.: custom statistics, traffic features,
etc; Updated packet by packet

Global registers: common to
multiple flows; Can be updated by

multiple flows ςlike a global
variable in a SW program

Open Packet Processor: workflow
User-programmed set of comparators.
Compares pairs of quantities among

registries, global variables, and packet
header fields, using user-selected >, <, =,
<=, >= comparators; returns 0/1 vector

Condition results (a 0/1 bit string
vector) can now be used for matching.
wildcard permits to filter condition of

interest for different states/events

Open Packet Processor: workflow

Returns microinstructions (of a domain-specific
custom ALU instruction set) to be applied

Open Packet Processor: workflow

Next state & results written back into
registers. Note that Update may differ

from lookup, for bidirectional flow
handling

Parallel array of ALUs: executes (in 2
clock cycles) all returned

microinstructions and updates relevant
registers. IN/OUT also written in TCAM

output - e.g. ADD(Ri, Gj) ҦRk

hǾŜǊŀƭƭ ǾƛǎƛƻƴΥ ǎǘƛƭƭ ά{5bέ

Smart
forwarding HW

Smart
forwarding HW

Smart
forwarding HW

Network OS

Controller
Several applications
ÅTraffic policing
ÅClassifiers
ÅDoSmitigation
ÅFault tolerance and

fast failover
ÅData driven routing
ÅSecurity/monitoring
ÅStatefulfirewall

Smart
forwarding HW

Controller still in chargeǘƻ ΨǇǊƻƎǊŀƳΩ ǘƘŜ ƴŜǘǿƻǊƪ
But Ŏŀƴ ΨǇǳǎƘΩ time-critical / localized

statefulcontrol tasks down in the switches

NetFPGAprototype
HW proof of concept implementation

Prototype architecture

Implemented in a
NetFPGASUME Virtex 7

Prototype architecture

nf_10ge_interface:
Four ingress queues collect the packets

coming from the ingress ports

input_arbiter: A 4-input 1-output mixer
block aggregates the packets using a round

robin policy. The output of the mixer is a 320
bits data bus able to provide an overall

throughput of 50 Gbps

A delay queue stores the packet
during the time need by the Open
Packet Processor tables to operate

Prototype architecture

The state table is realized by the
d-left hash table (4k entries, MHT without
moving capability) and a small TCAM (32

entries * 128 bits) and a companion SRAM
(configured as dual port RAM)

First TCAM only for static states (e.g.
packets belonging to a given subnet)

The look-up and update
extractor blocks that

build the keys that are used to
read/update the state table.
The 128 bit output is given as
input to the state lookup and

update

Look-up
extractor

D-left
Hash
Table

TCAM
1

RAM
1Lookup

Lookup
& mask

state

Flow
registers

Prototype architecture

Prototype architecture

The XFSM table is realized by the second TCAM/SRAM
pair. The TCAM has 128 entries * 160 bits and the

RAM store the next state, an action (if any) and a set
of ALU INSTRUCTIONS

TCAM

RAM
2

RAM
4

RAM
3

Set ALU instructions

Nextstate

action

Prototype architecture

This block deploys an array of ALUs
(Arithmetic and Logic Units) which support a
specific set of (micro)instructions and which
execute in parallel the instructions provided

as output of the XFSM Table.
The updated registry values are stored in the

memory locations (flow registries and/or
global registries)

output_queues_v1_0_0:
The action block applies the

selected actions and forward the
packet to the output queues

Prototype architecture

Each component is memory mapped in the
address space handled by the NetFPGAwith

the protocol AXI-lite.
Thus, prototype is configurable via

MicroBlazeor PCIewhich can directly
read/write the content of these components

TCAM-based packet processing engine!

ÇExtreme flexibility!
Å·C{a ΨǇǊƻƎǊŀƳǎΩ ŀƭƳƻǎǘ ŦƭŜȄƛōƭŜ ŀǎ ƻǊŘƛƴŀǊȅ ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜ
Åcan define variables, store and change values, compute features, etc

ÇGuaranteed wire speed!
ÅFixed time per-packet computational loop
Å6 clock cycles in our ongoing HW design

Ç (currently two tech limitations)
ÅOnly 1 ALU operation per each packet Ą pipelined ALU arrays

possible, but would increase processing time and yield more
complex configuration
ÅALUs only in update, not in conditions Ą does not permit conditions

such as (R1+R2>100)
ÅSolution (not nice, but workaround): compute R1+R2 ĄR3 during

previous packet, then use (R3>100)

DEMO
LOAD BALANCING, flow-consistent

Demo high level description

Counter: 1Counter: 2

Demo detailed deployment

NetFPGA
OPP PoC

PowerEdge
eth4

web client 1

PowerEdge
eth5

web client 2

ninaeth4
web virtual host 1

on 10.0.0.2:80

PowerEdgeIntel i5 server nina Intel i5 server

10gbe

10gbe

ninaeth5
web virtual host 2

on 10.0.0.3:80
10gbe

10gbe

Configuring the NetFPGA

