
Packet Manipulator Processor
Speaker: Marco Spaziani Brunella

marco.spazianibrunella@students.uniroma2.eu
giuseppe.bianchi@uniroma2.it

salvatore.pontarelli@uniroma2.it
marco.bonola@uniroma2.it



Talk Summary

1. Current state and background

2. What is Packet Manipulator Processor?

3. Programming the PMP

4. Packet Manipulator System

5. Performance highlights

6. Synthesis details

7. Future works, resources and acknowledgements



1– Current state and background

Open Flow

Match Action

Very flexible

Pre-
implemented; 

can only be 
“chosen”

Custom NAT?
Custom 

encapsulation?



NAT

IP in IP

ARP reply

Packet
Manipulator

Processor

Hardware-implemented actions Software programmable “actions”

NAT
routine

IP in IP
routine

ARP 
Reply

routine

Instruction memory

Software code
Eg. ASM, C, P4 …..

1.1 – Our proposal

Idea 1: MIPS processor

Idea 2: VLIW processor

Too slow!!!

Custom
action
routine



1.3 – PISA differences

We don’t want “atomic” action on a packet going on a pipeline. Instead, we want to collect all the matches for the 
packet and then arrange the code to perform the desired actions optimizing the hardware.

P
ro

gr
am

m
ab

le
Pa

rs
er

Match
Gatherer

Scheduler
Action

Performer



• Static 8-issue microprocessor (VLIW)

• 32bit dataplane

• 32x32bit general purpose registers and 32x1bit branch registers

• VHDL described

• Branch prediction

• Lane forwarding

2 – What is Packet Manipulator Processor?



2.1 – Architectural overview 1/2



2.1 – Architectural overview 2/2



• The instruction set is somehow derived from the one of the MIPS (altough has been enriched

with specific instruction to handle branches).

• At the current development phase, the compiler toolchain is missing (we “manually” write the 

bytecode in the instruction memory)

• We are working on an assembler that works with a C compiler for VLIW from HP(not

opensource sadly).

3 – Programming the PMP



To ease the task of implementing the PMP, we provide a complete PMS (Packet Manipulator
System) wich includes:

• PMP Core

• AXI-S Input interface

• AXI-S Output Interface

• Instruction Memory

• Toolchain (Would be nice to have one actually )

4 – Packet Manipulator System



4.1 – AXI-S input interface



4.2 – AXI-S output interface



• One instruction (= 8 syllables) per clock cycle

• 3-stage pipeline for each lane

• 3 clock cycle delay

• 1 clock cycle branch penalty

• Heavy use of prefetch (data to be used in decode stage are required in fetch stage…) 

• 256 bit parallel load/store in one clock cycle (ideal for AXIS NetFPGA-SUME data interface)

• Lane forwarding to avoid penalty arising from the pipes (if data required is the same as the 

one currently in writeback, the data is forwarded in an earlier stage of the lane to avoid data 

hazards)

5 – Performance highlights



5.1 – Example: load/store from NetFPGA Input arbiter to BRAM 
queues on 256bits



Very small HW footprint!

6 – Synthesis details 1/2



Fully synthesized at 250MHz!
Way over 156.25MHz needed for in-out 
interface!

6 – Synthesis details 2/2



• Provide a complete toolchain for the PMP

• Porting of the ISA to RISC-V

• Adding more network-specific instruction (eg. Checksum recalculation)

7.1 – Future work



• https://bitbucket.org/marco_spaz/pmp

• https://riscv.org/

7.2 – Resources

https://bitbucket.org/marco_spaz/pmp


7.2 – Acknowledgements

This project has been developed within the European project Superfluidity.

Thanks for your attention!


