

Packet Manipulator Processor

Speaker: Marco Spaziani Brunella

marco.spazianibrunella@students.uniroma2.eu giuseppe.bianchi@uniroma2.it salvatore.pontarelli@uniroma2.it marco.bonola@uniroma2.it

Talk Summary

- 1. Current state and background
- 2. What is Packet Manipulator Processor?
- 3. Programming the PMP
- 4. Packet Manipulator System
- 5. Performance highlights
- 6. Synthesis details
- 7. Future works, resources and acknowledgements

We don't want "atomic" action on a packet going on a pipeline. Instead, we want to collect all the matches for the packet and then arrange the code to perform the desired actions optimizing the hardware.

- Static 8-issue microprocessor (VLIW)
- 32bit dataplane
- 32x32bit general purpose registers and 32x1bit branch registers
- VHDL described
- Branch prediction
- Lane forwarding

2.1 – Architectural overview 1/2

 The instruction set is somehow derived from the one of the MIPS (altough has been enriched with specific instruction to handle branches).

• At the current development phase, the compiler toolchain is missing (we "manually" write the bytecode in the instruction memory)

• We are working on an assembler that works with a C compiler for VLIW from HP(not opensource sadly).

To ease the task of implementing the PMP, we provide a complete PMS (Packet Manipulator System) wich includes:

- PMP Core
- AXI-S Input interface
- AXI-S Output Interface
- Instruction Memory
- Toolchain (Would be nice to have one actually 🙂)

- One instruction (= 8 syllables) per clock cycle
- 3-stage pipeline for each lane
- 3 clock cycle delay
- 1 clock cycle branch penalty
- Heavy use of prefetch (data to be used in decode stage are required in fetch stage...)
- 256 bit parallel load/store in one clock cycle (ideal for AXIS NetFPGA-SUME data interface⁽³⁾)
- Lane forwarding to avoid penalty arising from the pipes (if data required is the same as the one currently in writeback, the data is forwarded in an earlier stage of the lane to avoid data hazards)

5.1 – Example: load/store from NetFPGA Input arbiter to BRAM queues on 256bits

			23, 824, 8666 113			
Name	Value	25,820 ns	25,825 ns	25,830 ns	25,835 ns	25,840 ns 25,
La cik	1					
Navigator XIS TDATA(255:0)	+ 630a05d608b8caa			630	a05d608b8caa606	5e0040b150ba00004
16 SO AXIS TVALID	1					
M0 DATA OUTPUT	-					
•	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	63
DATA BUS						
•	00000000		0000000		X 36420c00	*
•	00000000		0000000		21009639	*
•	00000000		0000000		83761e59	k
•	00000000		0000000		00450008	×
•	00000000		0000000		b150ba00	*
•	00000000		0000000		066e0040	*
•	00000000		0000000		08b8caa6	*
•	00000000		0000000		<u> 630a05d6</u>	*
•dbus_data_in_0_s(31:0)	36420c00	υυυψυυυυ				
•-• dbus_data_in_1_s[31:0]	36420c00		36420c00	X	21009639	×
•-ฟ dbus_data_in_2_s[31:0]	36420c00		36420c00	X	83761e59	×
•-• dbus_data_in_3_s[31:0]	36420c00		36420c00	X	09450008	X
•-• dbus_data_in_4_s[31:0]	36420c00		36420c00	X	b150ba00	X
•-• dbus_data_in_5_s[31:0]	36420c00		36420c00		056e0040	×
•-• dbus_data_in_6_s[31:0]	36420c00		36420c00		08b8caa6	*
•-• dbus_data_in_7_s[31:0]	36420c00	υυυψυυυυ	36420c00		6 30 a05d6	X
•-*** dbus_addr_read_0_s[31:0]	00000000					0000000
•-*** dbus_addr_read_1_s[31:0]	00000000	00	00000		0000001	X
•-** dbus_addr_read_2_s[31:0]	00000000	00	00000		0000002	X
•-*** dbus_addr_read_3_s(31:0)	00000000	00	00000		0000003	X
•-*** dbus_addr_read_4_s(31:0)	00000000	00	00000		0000004	X
•-*** dbus_addr_read_5_s(31:0)	00000000	00	00000	X	0000005	¥
•** dbus_addr_read_6_s[31:0]	00000000	00	00000	X	0000006	¥
•-*** dbus_addr_read_7_s(31:0)	00000000	00	00000	Х	0000007	¥
•	00000000					000000
•** dbus_add_wrt_1_s(31:0)	00000000		0000000		00000001	¥
•	00000000		0000000		0000002	¥
• dbus_add_wrt_3_s[31:0]	0000000		0000000		X 0000003	¥
•** dbus_add_wrt_4_s[31:0]	0000000		0000000		X 00000004	¥
•	0000000		0000000		X 0000005	¥
•	00000000		0000000		X 0000006	¥
•	0000000		0000000		X 0000007	Ж

6 – Synthesis details 1/2

Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs∗ LUT as Logic LUT as Memory	3224 3224 0	0 0 0	433200 433200 174200	0.74 0.74 0.00
Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	1278 1278 0 112 0	0 0 0 0	866400 866400 866400 216600 108300	0.15 0.15 0.00 0.05 0.00

2. Memory

+ 	Site	Туре	Used	Fixed	Available	Util%	ŀ
Blo	CK RAN RAMB36, RAMB3 RAMB18	M Tile /FIFO∗ 36E1 only	44 44 44 Ø	0 0	1470 1470 2940	2.99 2.99 0.00	

Very small HW footprint!

SUPER L	IDITY	6 – Synthesis de	etails 2/2	CINCLE consorzio nazionale interuniversitario per le telecomunicazioni
Clock Summary Name Waveform 	Period (ns) Frequency (M 4.000 25	1 <u>Hz)</u> 0.000	Fully synthesized at 25 Way over 156.25MHz r interface!	0MHz! needed for in-out
Design Timing Summary				
Setup	Hold		Pulse Width	
Worst Negative Slack (WNS):	0.677 ns Worst Hold Slad	:k (WHS): <u>0.020 ns</u>	Worst Pulse Width Slack (WPWS):	<u>1.326 ns</u>
Total Negative Slack (TNS):	0.000 ns Total Hold Slac	k (THS): 0.000 ns	Total Pulse Width Negative Slack (TPWS)	: 0.000 ns
Number of Failing Endpoints:	0 Number of Faili	n g Endpoints: 0	Number of Failing Endpoints:	0
Total Number of Endpoints:	27423 Total Number of	f Endpoints: 27423	Total Number of Endpoints:	7736

All user specified timing constraints are met.

- Provide a complete toolchain for the PMP
- Porting of the ISA to RISC-V
- Adding more network-specific instruction (eg. Checksum recalculation)

- <u>https://bitbucket.org/marco_spaz/pmp</u>
- https://riscv.org/

This project has been developed within the European project Superfluidity.

Thanks for your attention!