SUPERRBLAIDITY

SUPERFLUIDITY

A SUPER-FLUID, CLOUD-NATIVE, CONVERGED EDGE SYSTEM

Research and Innovation Action GA 671566

DELIVERABLE 16.1:

INITIAL DESIGN FOR CONTROL FRAMEWORK

Deliverable Type:

Dissemination Level:

Contractual Date of Delivery to the EU:

Actual Date of Delivery to the EU:
Workpackage Contributing to the Deliverable:

Editor(s):

Author(s):

Report

CcO

31 May 2016
31 May 2016
WP6

Haim Daniel (Red Hat)

Livnat Peer (Red Hat)

Carlos Parada, Isabel Borges, Francisco Fontes (Altice
Labs),

George Tsolis (Citrix), Michael McGrath, Vicenzo
Riccobene (Intel).

Pedro Andres Aranda Gutierrez (Telefénica, 1+D),
John Thomson, Julian Chesterfield, Joel Atherley,
Manos Ragiadakos (OnApp).

Haim Daniel (Red Hat)
Erez Biton (ALU-IL).

Internal Reviewer(s) [Michael McGrath (Intel)
Pedro A. Aranda Gutiérrez (Telefdnica, 1+D)

Gal Hammer (Red Hat)

Abstract: [This internal deliverable carries a report for gap
analysis in supporting C-RAN, MEC and NFV
requirements with OpenStack projects umbrella.
Such properties and needs as dynamic scaling, traffic
load balancing and provisioning have been put into
research.

Keyword List: [Orchestration, Management

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 2 of 88

INDEX
SUPERFLUIDITY Lottt ettt ettt ettt ettt ettt ettt e bt et e ettt e e st e st es s en e e st eseeseeneeneeneenseneeneeneas 1
A SUPER-FLUID, CLOUD-NATIVE, CONVERGED EDGE SYSTEMuiutiuietiasiesteseeseestasteseeseeseeseeseeseeseeseeseeneeseensesseseeneeneas 1
Research and INNovation ACtion GA 671566cc.ooviiiiiiiiiiieeeee e 1
DELIVERABLE 16,1 ..o 1
INITIAL DESIGN FOR CONTROL FRAMEWORKcuviiiiiiiiiiiic it 1
INDEX .ttt b e bt bt b bbb bbb bbb bbb sttt ene 3
LIS O FIUIES .ot e e e ettt e e et e e e e e e et e e et e e e e e e ere e e naae e 8
LIST OF TABIES ..ttt 8
(G (o T-Y= o RS URR TR 8
1 INTrOTUCTION ettt ettt 10
1.1 Deliverable desCriPTiON ... e 10
1.2 QUATIEY MBVIBW i ittt et e et e e et e e eraeeenns 10
2 REQUITEIMENTS @NAIYSIS 1oiiiviiiieiie ettt ettt e et e e e e e e et e e et e e erae e e etaeeeens 11
B N O U oY o o] Y= Yol s I PRSPPI 11
2.2 NFV Technical REGUINEIMENTS. . .ciivieiciie ettt e e eave e aae e 11
2.2. 1 ATCRIEECTUTE e 11
2.2.2 RY=To U1 =10 41T a1 €T PRRR 13
2221 ApPlication HFECYCIE oo 13
2.2.2.2 Application scheduling and instantiation ..o, 13
2.2.23 KPI'S SUDPOIT .ottt ettt ettt ettt et et e et 14
2.2.2.4 ApPlication SCAlING.....oooiie e 14
2.2.2.5 LOAA BAIANCING .oiiiiiiiiiiee e 15
2.2.2.6 Service FUNCHON CRAINING ..cvviiiiiiieece e 15
2.3 MEC Technical rEQUIFEMENTS ...ioiiie ettt 17
2.3 1 AFCRITECTUIE ettt 17
2.3.2 R GUITEIMENTS ittt e e e e e e ettt e e e e e e e s et tbb b b e e e e eeessesttbbaaaeeeeesseensensees 18
2321 APPlICAtioN lIfECYCIE e 18
2.3.2.2 Application scheduling and instantiationcccceieiiiii e, 19
2.3.2.3 MODITITY SUDPOIT .ottt ettt 20

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 3 of 88

2324 KPI'S SUPPOIT .ttt ettt et et e e et e e beenneeeneas 20
2.3.2.5 Network Traffic CONTIOLoviiiiiie e 21
2.3.2.6 SCAlING [WIP] oo 21
2.3.2.6.1 Event Handling Capacityccuioieicecciece et 21
2.3.2.6.2 APPLICAION SCAlING ...veieeee e 21
2.3.2.6.3 Containers SUPPOIE [WIP] ..ot 22
2.3.2.64 Microkernels SUPPOTT [WIP] .. 22

2.5 Technical RequiremMents — C-RANottt 23
2.6 Generic Technical Requirements — NFV VS, MEC ...cc..oooiiiiiiiiciee e 26

3 State Of the @rt @NAIYSIS oo 27
TR R O T o<1 1] = Lol SRRSO 27
3.1.1 OpenStack Virtual Infrastructure Management (VIM)ccocovveeiiiiiicieeceeeeee e 27
3.11.1 Network Traffic CONTIOlo 27
3.1.1.2 SChEAUIING PATAMETEIS oo 27
3.1.1.3 AV To] o J1 1RV U] o] e L Y S SRR 27
3.1.14 I VT o] oTo] o AU RO 28
3.2 CloUADANG. ...t 28
G B O T o 1= o 1Y/ = o o TS USSP 31
3.3.1 Network Traffic CONTrOl ... i i 31
3.3.2 SchedUling PAramETEIS . oovii ettt 31
3.3.3 MODIlItY SUPPOIT et 31

G R N BT o] 0T] o A USRS P PPPPPRRR 31

4 Management and Orchestration DESIEN.......covuiiiiiiiiiie ettt 32
4.1 CloUd INFrasStrUCTUIE c.coueii ettt 32
4.1.1 Dynamic Definition of Service Deployment Templates to Support KPIscc...ccu...... 32
4.1.2 Opltion 1: ONe NFVI PO SEIVICE ..viiiiiiiiiiiiiee et 34
Conclusion: Inefficient aNd COMPIEXc.cccvoiiiiiiiiiiieie e 34
4.1.3 Option 2: Common NFVI for all Services eventually locations........c..ccccceeeeiiiiiiiiinen, 34
CONCIUSION: PIEFEITEA. ...ttt ettt 35
4.2 Cloud Infrastructure ManagemMENTouii it 35

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 4 of 88

4.2.1 Option 1: One local VIM per NFVI ..ot 35
CONCIUSION: ACCEPLADIEoeeeeeeee ettt 36
4.2.2 Option 2:Single centralized VIM for all NFVIScccooiiiiiiiiiiieeeceeeeceee e 36
CONCIUSION: ACCEPLADIEoeeeeeee ettt 37
4.2.3 Option 3: Hybrid Option 1 and OPtion 2cocviiiiieicee e, 37
CONCIUSION: PIEFEITEA. ...ttt ettt ettt 37
4.3 Cloud Management and Orchestrationocveeioieiiiec e, 39
4.3.1 Option 1: One Orchestrator for all Services and 0Cations........cc.ccceveevieiciieecie e, 39
ConCIUSION: NON-TEALISTIC ..ot 39
4.3.2 Option 2: One Orchestrator Per SEIVICEcoivii e i, 39
CONCIUSION: PrefErreoeiiiiie e 40
N O 1ol oIy (=Y dl o] H =1 V7Y TSRO 41
441 Option 1: Northbound and Southbound Interfacescc.ccoovveveiiicii e, 41
CONCIUSION: ACCEPLADIE ...t ettt 41
4.4.2 Option 2: Eastbound and Westbound INterfacescccvvvvveeiiiiiciee e, 41
CONCIUSION: DIffICUIL ..ottt ettt ettt eae e 42
4.4.3 Option 3: Hybrid Option 1 and Option 2c.coouiiiiiiieeeeceeee e 42
CONCIUSION: PIEFEITEA. ..ottt et ettt ere e 42
5 ManagemMeNnt TOOINEcoviiiiieieeee ettt et ettt 43
5.1 MicroVisor Orchestrationcooiioiiiii e e 43
5.1.1 Ul design for managing a large collection of resourcescccoceveevviiiiiiiciiicceee 43

B CONCIUSION ettt b et ettt ettt 49
7 RETBIBNCES ..ottt h ettt 50
B ANNEXES ittt ettt ettt 51
8.1 Detailed Orchestration REQUIFEMENTScvviiiiiiiiie ettt 51

B L L NV e h ettt ettt enes 51
8.1.1.1 GBIMEBIIC 1ttt ettt ettt et ettt et 51
8.1.1.2 REPOSITOTIES ettt e e e e e e e e e e e e e e et b b e e e e e e e e s s eatbbraeaaaeas 51
8.1.1.3 ONmD0AIAING oot 54
8114 INSTANTIATION Lottt 55

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 5 of 88

8.1.1.5 VT o o] o T o= SRR 56
8.1.1.6 IMOAIFICATION ...ttt ae et 56
8.1.1.7 =1 011 o= 1T o 1 RSP PRRP 58
812 IMIEC ettt a et h e n et r sttt n st ne st e ne s 59
8.1.2.1 GBINEIIC 1.ttt ettt 59
8.1.2.2 REPOSITOMIES ettt 59
8.1.2.3 @ g B oToT=] e 110 =R RPUR 61
8.1.2.4 INSTANTIATION ..o 61
8.1.2.5 Y ToT] (o] a1 o] =S U 62
8.1.2.6 IMOAITICATION ..t 63
8.1.2.7 IMIOBDITITY ettt 63
8.1.2.8 TEIMINGTION ..t 64
8.2 Detailed Orchestration FIOWSc..oiiiiiiiiiieeeeee e 65
82,1 NV ettt 65
8.2.1.1 VNF ON-D0AIAING oot 65
8.2.1.2 VNF INSTANTIATION .ottt 65
8.2.1.3 VNF SCAlNG OUL..ciiiiiiiiecce ettt 66
8.2.1.4 VNF SCAlING IN ittt 67
8.2.15 VINF TEIMINGTION c.tie ittt et e 68
8.2.1.6 NS ON-DOAIAING.....tiiiitiie ettt 69
8.2.1.7 NS INSTANTIATION it 69
8.2.1.8 NS SCAIING QUL .ottt ettt ettt e sabe et 70
8.2.1.9 NS SCAIING TN 1ttt et ettt 71
8.2.1.10 NS TEIMINGTION teitiiiiiieiitt ettt 72
B.2.2 IMIEC ettt nes 73
8.2.2.1 MEC APP ON-D0AIAING ...cuiiiiiiie ettt 73
82.2.2 MEC APP INSTANTIATION 1.ttt 74
8223 MEC APP SCAlING QUL coviiiiiiiiee et 77
8224 MEC APP SCAlING TN 1o 80
8.2.2.5 MEC APP REIOCATION .ottt 83

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 6 of 88

8.2.2.6 MEC APP TeIMINATION ettt e e e e 87

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 7 of 88

o /7

/

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

ETSI NFV reference architecture [ETSIENFV]. .ot 12
Affinity graph between different C-RAN functional BIOCKS...........ccooviiviiiiiiiiiiccccccccecceeee e 23
OpenStack based generiv VNF Management SYSTEMc.cviiiioiiieieeei ettt 29
VINF LIfECYCIE OPEIATION ..ttt ettt bbbt et e bbbt ettt sa et eaeeae s 29
The deployMENT WOTKEIOW.......ccviiiiii ittt ettt ebeeb bbbttt ea s 30
General workflow of the Proposed SOIUTIONciiiiiii ettt 33
OPLION 1: ONE NFVI POI SEIVICE. ittt ettt ettt ettt ettt ettt e e te e e bt e eab e e sab e e bt e esbeeesbaeesbeessseessseenseeenseennnas 34
Option 2: Common NFVI for all Services and eventually l0CatioNs.ccoovivviiiiiiiiecececeeeeeeeee e 35
Option 1: ONE 10CAI VIM PEI NFVL ..ottt ettt ettt ettt ettt sb e e et beenbeeaeas 36
: Option 2: Single centralized VIM for @ll NFVIS. ...ttt 37
: Option 3: Hybrid Option 1 and OPioN 2. ..oceiei ittt 37
: Option 1: One Orchestrator for all Services and 10CatIoNS.ooiiiiiiiiiiicecc e 39
2 Option 2: ONe Orchestrator PEI SEIVICE. ...iiiiiiiiii ettt ettt 40
: Option 1: Northbound and Southbound INtErfACES........ccoviiiiiiciee e 41
. Option 2: Eastbound and WestbouUNd INtEIMTACES.cviiiiiiiiiceecce e 42
: Option 3: Hybrid Option 1 and OPLioN 2. ..oc.eoeeieicicoe e 42
: Mock-up diagram showing a Ul that relates virtual to physical reSoUrces.........cccooveviiiieiiccccieeee e 45
: Mock-up diagram showing the rack Utilizationcocviiiiiiioice e 46
: Mock-up diagram showing the storage utilisation in the management Ulc.cccoovviiiiiiiiiicecee e 47
: Mock-up showing the Network Planner Ulo 48

List of Tables

Table 1: SUPERFLUIDITY DICTIONAIY. ..couiiieieieeee ettt ettt ettt ettt ettt ettt e et e ettt et e et e eae et e eaeeeae e e e e e eaeeneeae 9
Table 2: C-RAN RFB FEOUINEMENTScviieiieiceee ettt ettt ettt ettt ettt e et e et e et et e et e et e et et e et e eae et e e eeaeeteenneeaean 25
Table 3: NFV VS MEC COMPATISONviieieee ettt ettt ettt ettt et e oot e et e e ae e et e et e eaeeeae et e et e eaeenaeeaeeeaeeteeneeanean 26
Glossary

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 8 of 88

0SS

Operation Support System

VIM Virtual Infrastructure Management
VM Virtual Machine

MANO Management And Orchestration
NFV Network Function Virtualization
KPI Key Platform Indicator

Table 1: SUPERFLUIDITY Dictionary.

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 9 of 88

C _/7 * ¥ &

—

1 Introduction

1.1Deliverable description

The present document describes requirements towards the management and control framework.
In addition to the definition of requirements, this internal deliverable introduces a draft for the
architectural design of the framework.

All requirements are assigned a unique name, for future reference and own the following format:
[RegName-XX] where XX enumerates the same property requirements.

1.2Quality review

Review Team member responsible of the deliverable:

Superfluidity
project

16.1 draft May 2016

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 10 of 88

2 Requirements analysis

2.10ur Approach

In order to tackle the challenge, our approach was split into several steps. As a first step we started
by analyzing the use cases from WP2 as our input. The objective was the identification of shared
attributes and the identification of common requirements that the use cases shared. After doing so,
we had the next step ready — investigation of the aforementioned requirements’ support in existing
orchestration solutions. As a last step we need to identify the gaps between the requirements and
each solution capabilities.

2.2NFV Technical Requirements

2.2.1 Architecture

The following two figures depict the relevant ETSI NFV architectures: the main ETSI NFV and the
MANO (Management ANd Orchestration). This MANO architecture highlights the management and
orchestration components (dashed box), identifying in more detail the management and
orchestration interfaces, and other sub-components, like Catalogues and Services/Resources
Repositories.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 11 of 88

NFV Management and

Orchestration
Os-Ma
e OSS/BSS } Orchestrator
: Se-Ma
4 Service, VNF and Infrastructure }
. : Description 1 orvnfm
EMS 1 EMS 2 EMS 3 Ve-Vnfm
o : . . - VNF
P —+ - - Manager(s)
P VNF 1 VNF 2 VNF 3 4 orvi
P ¢) ¢ !
Pt 3 - Vn-Nf f + Vi-Vnfm
i INFVI
' Virtual Virtual Virtual
Computing Storage Network
: ——— NFf-Vi Virtualised
: Virtualisation Layer] Infrastructure
Vi-Ha ‘I' Manager(s)
H Hardware resources
N Computing Storage Network
Hardware Hardware Hardware
&—& Execution reference points v Other reference points wefem Main NFV reference points
Figure 1: ETSI NFV reference architecture [ETSI-NFV].
.--'-- - .- ------:
. 1
OsMa-nfvo 1
. O55/B%% E i P Orche strabor JIF 0} - :
1
i [} v T v i :
! 1] H . Or-Vnfm E H 1
' i | — — — -+ 1
i : : J— — i : :
1 : d .
] : 1] VINF NFV NEVI 1
: - : Catalogue Catalogue Instances Rescurces :
1 i 1 H 1
I i | -+ 1
1 ! :
1 H ' ' 1
e i : Ve-Vnfm-em : 1
1 M []
i =M H 1 VHF 1
- - H [Manager (VIFM) :
1 ——
' ; : Ve-Vnfm-wnf :
- VHE : | Vi-Vinfm 1
1
1 1 :
: — Win-MF] Or-Vi 1
i = Virtualised 1
! 1 MF-Vi Infrastructure | :
L NFVI ; - Manager I H
' Vo NFV-MANO
L- LB LR L & X L L I % 2 L 2§ _§ _JE 3 X L L J% L K L L} J --.
#—— Execution reference points -|-- Other reference points —4— Main NFV reference points

Figure 2 — ETSI NFV MANO reference architecture [ETSI-NFV-MANQ].

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 12 of 88

2.2.2 Requirements

This section describes high-level technical requirements for a NFV management and orchestration
system. More detailed requirements and flows can be found in Annexes 8.1.1 and 8.2.1,
respectively.

[Onboarding-01] The MANO framework MUST support the on-boarding of VNFs and NSs,
respectively into the NFV Catalogue and NS Catalogue, making them available for instantiation.

[Onboarding-02] The MANO framework SHOULD perform other actions than on-boarding regarding
VNF and NS packages: Disable, Enable, Update, Query and Delete.

2.2.2.1 Application lifecycle

[Lifecycle-01] The MANO framework MUST support the following VNF and NS lifecycle management
(LCM) operations:

e [nstantiation

e Scaling

e Modification

e Termination

[Lifecycle-02] The MANO framework MUST be able to receive and process application LCM
requests:

e From the OSS or a UE application

e Based on LCM rules.

[Lifecycle-03] The MANO framework MUST be able to identify the VNF/NS features they require to
run. This will be the input for the decision on which location VNFs/NSs shall be provisioned.

[Lifecycle-04] The MANO framework MUST support the instantiation and termination of a running
NFV or NS when required by the operator.

2.2.2.2 Application scheduling and instantiation

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 13 of 88

[Instantiation-01] The MANO framework MUST support the indication of the following virtualized
resources:

e Compute

e Storage

e Network resources

e Specific hardware support

[Instantiation-02] The MANO framework MAY support the indication of the following requirements,

such as:
e |atency
o Jitter
e Bandwidth

[Instantiation-03] The MANO framework MUST support the indication of physical location (PoP-DC).

[Instantiation-04] The MANO framework MUST consider cost requirements, which can be a
translation of the operator's estimation for the deployment costs.

2.2.2.3KPI’s support

[Monitoring-01] The MANO framework MUST be able to collect infrastructure and service
monitoring information, in order to feed KPl-based automated management and orchestration
features.

2.2.2.4 Application Scaling

[Scaling-01] The MANO framework MUST be able to scale a VNF and/or NS, on OSS request or
automatically based on KPls, in order to increase/decrease the capacity.

[Scaling -02] The MANO framework MUST be able to terminate a VNF and/or NS whenever it is no
longer required.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 14 of 88

2.2.2.5Load Balancing

As described in paragraph 4.3.1 of Deliverable D2.2, one of the VNF architecture options involves
providing the load balancing function as part of NFVI. Moreover, VIMs (such as OpenStack) have the
capability of managing common load balancing functions through an interface/API (OpenStack
LBaaS, https://wiki.openstack.org/wiki/Neutron/LBaaS), which is also extensible to support different

load balancing backends (in the case of OpenStack, through Neutron LBaaS plugins).

[LB-01] The MANO framework SHOULD be support load balancing function as part of the NFVI/VIM
infrastructure. This requires integration with the application lifecycle and scaling functions.

[LB-02] The MANO framework SHOULD support standard load balancing features. OpenStack LBaa$S
captures these requirements at https://wiki.openstack.org/wiki/Neutron/LBaaS/requirements.

As also mentioned in paragraph 4.3.1 of Deliverable D2.2, in-network services occasionally require
load balancers that operate in the so-called firewall mode: Unlike server load balancing, where the
clustering can be realized using one load balancer, network service clustering requires two (logical)
load balancers, one on each side of the cluster.

[LB-03] The MANO framework SHOULD ideally support firewall load balancing mode. However, this
MAY require addressing gaps in NFVI/VIM (OpenStack LBaaS doesn’t appear to support this case).

2.2.2.6Service Function Chaining

The high-level architecture of Service Function Chaining (SFC), as specified by IETF (RFC 7665), was
described in paragraph 4.3.3 of Deliverable D2.2. In this section we list the relevant requirements
from the MANO side.

[SFC-01] The MANO framework MUST support the creation of Service Function Chains (SFCs),
consisting of an ordered sequence of Service Functions (SFs).

SFs are virtual machines, or even physical devices, that perform a network function such as firewall,
content filter, content cache, or any other function that requires processing of packets in a flow.

[SFC-02] The MANO framework MUST support SFCs with both simple (i.e. single SF) and complex
(i.e. sequence of multiple SFs) Service Functions Paths (SFPs).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 15 of 88

https://wiki.openstack.org/wiki/Neutron/LBaaS
https://wiki.openstack.org/wiki/Neutron/LBaaS/requirements

Materialisation of SFCs requires the cooperation of the NFV Orchestrator, VIM and SDN controller.
The NFV-O provides the VNFFG definition (please refer to relevant requirements in this document),
the VIM creates the SFC by attaching the SF VM instances to network ports and the SDN controller
configures the network overlay fabric that interconnects these network attachment points.

According to the OPNFV SFC project (https://wiki.opnfv.org/display/sfc), SFC also depends on the
VNF Manager:

http://artifacts.opnfv.org/sfc/brahmaputra/docs/design/architecture.html#vnf-manager

[SFC-03] The MANO VIM MUST support the attachment of SF VM instances to network ports to
construct SFPs (for more details on how OpenStack aims to implement this capability, please refer
to http://docs.openstack.org/developer/networking-sfc/system design%20and workflow.html and

http://docs.openstack.org/developer/networking-sfc/api.html).

[SFC-04] A Service Function (SF) MAY actually consist of a cluster of VM instances. Each service
instance cluster represents a group of like SF VM instances, which can be used for load balancing
(please also see 2.2.2.5). The load balancing function MUST have the option to be sticky (i.e.
sessions in progress must be sent through the same SF VM instance). The load balancing function
MUST also have the option to ensure symmetric return traffic.

[SFC-05] The MANO VIM MUST be extensible to support the creation (“rendering”) of SFPs in
conjunction with different SDN controllers and renderers (e.g. OpenFlow, NETCONF, etc.).

The support of SFC-related requirements by the OpenDaylight SDN controller is described below:
https://wiki.opendaylight.org/view/Service Function Chaining:Main

[SFC-06] The MANO VIM MAY support a network overlay function that is part of the NFV
infrastructure (OpenStack will provide a reference implementation using Open vSwitch).

For a complete implementation of SFC, the MANO framework would need to also support
orchestration of the SFC Classifier, Service Function Forwarder (SFF) and SFC Proxy building blocks.
For more information on how OpenStack aims to support these SFC functions, please refer to

http://docs.openstack.org/developer/networking-sfc/ovs driver and agent workflow.html).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 16 of 88

https://wiki.opnfv.org/display/sfc
http://artifacts.opnfv.org/sfc/brahmaputra/docs/design/architecture.html#vnf-manager
http://docs.openstack.org/developer/networking-sfc/system_design%20and_workflow.html
http://docs.openstack.org/developer/networking-sfc/api.html
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
http://docs.openstack.org/developer/networking-sfc/ovs_driver_and_agent_workflow.html

[SFC-07] The MANO VIM SHOULD support orchestration of SFC Classifiers. The MANO VIM MAY
offer an implementation of an SFC Classifier that is part of the NFV infrastructure (OpenStack will

provide a reference implementation using Open vSwitch).

[SFC-08] The MANO VIM SHOULD support the orchestration of Service Function Forwarder (SFF).
The MANO VIM MAY also offer an implementation that is part of NFV infrastructure (OpenStack will
provide a reference implementation using Open vSwitch).

[SFC-09] The MANO VIM SHOULD support orchestration of SFC Proxies. The MANO VIM MAY offer
an implementation of an SFC Proxy that is part of the NFV infrastructure (OpenStack will provide a
reference implementation using Open vSwitch).

[SFC-10] The reference implementation of the SFF, SFC Classifier and SFC Proxy (if available)
SHOULD support the preferred SFC encapsulation scheme, NSH (please see IETF draft-ietf-sfc-nsh).

Please note that an initial implementation of a subset of the SFC requirements above was made
available in OPNFV Brahmaputra, as a combination of OpenDaylight, OpenStack and Open vSwitch:

https://wiki.opnfv.org/display/PROJ/Project+Proposals+Service+Function+Chaining

An overview of how OPNFV Brahmaputra puts all the pieces together:

http://artifacts.opnfv.org/sfc/brahmaputra/docs/design/index.html

Further progress is apparently being made, targeting OPNFV Colorado:
https://wiki.opnfv.org/display/sfc/OPNFV+SFC+Colorado+Release+Plan

Finally, the requirements for supporting VNF Forwarding Graphs are outlined below:
https://wiki.opnfv.org/display/PROJ/Openstack+Based+VNF+Forwarding+Graph

2.3MEC Technical requirements

2.3.1 Architecture

The following Figure depicts the relevant ETSI MEC architecture. This architecture describes how a
MEC environment should be organized, namely regarding the deployment of MEC App on top of a
cloud environment, as well as the whole management and orchestration functions to support this
operation.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 17 of 88

https://wiki.opnfv.org/display/PROJ/Project+Proposals+Service+Function+Chaining
http://artifacts.opnfv.org/sfc/brahmaputra/docs/design/index.html
https://wiki.opnfv.org/display/sfc/OPNFV+SFC+Colorado+Release+Plan
https://wiki.opnfv.org/display/PROJ/Openstack+Based+VNF+Forwarding+Graph

CFS 1
T
portal Mm8 Operations Support System
User
;J = ; app
pp Mx2 LCM | + Mm1
ro
1 Mmo
Mobile edge
orchestrator
Other l + Mm2 +Mm3
maobile T
ME |
edge Mp3 service
platform
1 4 . . ME ME app ME
Mp1 Mp1 Service registry platiomn || rues & app
I element reqts lifecycle
-] mart marrt mgmt
=] || o || ons [fums
handli -
ME ME ME control | |AM9NNE Mobile edge platform
app | [app | | app menager
Mobile edge platform
I =+ MmB
Dataplane |- MD2
| Virtualisation infrastructure
Otrer Virtualisation infrastructure ' manager
m obile Mm7
edge host Mobile edge host
Figure 3: ETSI MEC reference architecture [ETSI-MEC]]
2.3.2 Requirements

Mobile edge
system level

Mobile edge host level

This section describes high-level technical requirements for a MEC management and orchestration

system. More detailed requirements and flows can be found in Annexes 8.1.1 and 8.2.1,

respectively.

[Lifecycle-01] The management system MUST support the following application

2.3.2.1 Application lifecycle

management (LCM) operations:

Instantiation
Scaling
Relocation
Modification

Termination

lifecycle

[Lifecycle-02] The management system MUST be able to receive and process application LCM

requests:

From the OSS, a third-party, or a UE application

Based on LCM rules.

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 18 of 88

[Lifecycle-03] The management system MUST be able to identify the mobile edge features and
services an application requires to run. This will be the input for the decision on which mobile edge
host to provision the application.

[Lifecycle-04] The management system shall support the instantiation and termination of a running
application when required by the operator.

2.3.2.2 Application scheduling and instantiation

[Instantiation-01] The management system MUST be able to deploy the application on mobile edge
hosts in various locations, both in a central data center and at the edge of the Core Network.

[Instantiation-02] The management system MUST support the following deployment application
models:

e One App instance per MEC Host, serving multiple users

e Multiple App instances per MEC Host, each serving a single user

[Instantiation-03] The management system MUST support the indication of the following virtualized

resources:

e Compute
e Storage
e Network resources

e Specific hardware support

[Instantiation-04] The management system MUST support the indication of the following network
connectivity resources:

e Connectivity to local networks
e External connectivity to the Internet

e Access to user traffic

[Instantiation-05] The management system MUST support the indication of the following latency
requirements:

e Maximum
e Expected

[Instantiation-06] The management system MUST support the indication of physical location (edge).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 19 of 88

[Instantiation-07] The management system MUST support the indication of service requirements:
e Mandatory - for MEC Apps to be able to operate.
e Optional - for MEC Apps can benefit from, if available.

[Instantiation-8] The management system MUST consider cost requirements, which can be a
translation of the operator's estimation for the deployment costs.

2.3.2.3 Mobility support

[Mobility-01] The management system MUST support multiple MEC Hosts in different locations,
including radio sites, aggregation points, or at the edge of the Core Network.

[Mobility-02] The MEC system MUST guarantee service continuity while the UE moves across the
network (between different edges).

[Mobility-03] The MEC system MUST be able to maintain connectivity between a UE and a MEC App
instance when the UE performs a handover to another cell.

[Mobility-04] The MEC system MUST be able to perform application instance relocation for MEC
Apps dedicated to a single user.

[Mobility-05] The MEC system MUST be able to perform application state relocation for MEC Apps
serving multiple users.

2.3.2.4 KPI's support

Virtualization of appliances increases the flexibility of service management and reduces deployment
time and costs, but on the other hand it increases management complexity. This complexity can be
addressed through intelligent orchestration of infrastructure resources and services. Current
virtualization environments abstract the underlying infrastructure to simplify the deployment
process as a consequence they also provide limited capabilities to support intelligent orchestration
decisions e.g. resource aware deployments. Intelligent orchestration embraces different aspects of
the service lifecycle including improved infrastructure management, intelligent deployment
decisions and horizontal scaling management.

An intelligent deployment decision can be described as a deployment decision that takes into
account at least two important considerations:

1. Allocation of the optimal quantity and type of resources to a workload on the most
appropriate physical nodes.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 20 of 88

2. Characterization and analysis of the target infrastructure platform to ensure both
quantifiable performance and predictable behaviour of a deployed workload.

The following are the key requirements with regard to the fulfilment of service level KPlIs:

[KpiTemplate-01] — The system MUST be able to dynamically define a workload deployment
template to ensure that resource allocations can support required SLA’s and SLO’s.

[KpiScaling- 01] — The system MUST be able to determine the number and types of
resources to support workload scaling in order to maintain KPI’s and SLO’s.

[Monitoring-01] — The MEC system MUST be able to collect infrastructure and service
monitoring information, in order to feed KPl-based automated management and
orchestration features.

2.3.2.5Network Traffic control

[TControl-01] The management system must be able to provide provisioned MEC platforms with
guaranteed network bandwidth.

[TControl-02] The management system must be able to rate limit the provisioned MEC platforms
traffic flows.

[TControl-03] The management system must have the ability to selectively apply the traffic control
on different types of traffic, and have the ability of traffic classification.

[TControl-04] Within the constraints set by the orchestration and management, an authorized
mobile edge application shall be able to request the activation, update and deactivation of the
mobile edge application traffic rules dynamically.

2.3.2.6Scaling [WIP]

2.3.2.6.1 Event Handling Capacity

2.3.2.6.2 Application Scaling

[Scaling-01] — The MEC system MUST be able to scale a MEC App, on OSS request or
automatically based on KPls, in order to increase/decrease the capacity.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 21 of 88

[Scaling-02] The MEC system MUST be able to terminate a MEC App whenever it is no
longer required to serve users.

2.3.2.6.3 Containers Support [WIP]

2.3.2.6.4 Microkernels Support [WIP]

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 22 of 88

2.5Technical Requirements — C-RAN

Delivery D2.3 decomposes C-RAN into RFBs and further discuss the affinity of those RFBs. For
completeness, the affinity graph between the different proposed RFBs is given in :

CORE User Plane

Functional Blocks

User
Data

PHY RRH

PHY CELL

Figure 2: Affinity graph between different C-RAN functional blocks

Here, in Table 2,we further analyze the location, event handling capacity and scaling requirements
from those functional blocks.

FUNCTIONAL EXAMPLES OF FB FB EVENT HANDLING APPLICATION SCALING
BLock (FB) DECOMPOSITION DEPLOYMENT CAPACITY REQUIREMENT
LOCATION
()

PHY RRH Physical NF — not | Antenna site Not Scalable as application
virtualized

PHY Cell all the processes | Antenna site or | every 10 ms (LTE | scaling decision may be reactive
executed for one cell, | Front-End radio frame length) | (based on computational latency
e.g. FFT/iFFT, of previous frame). Less than 10

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 23 of 88

Modulation, Cyclic | Cloud ms requirement.
prefix
Joint Multiuser New UE could | Scale infout may be dependent
Detection — jointly arrive or leave | on UE mobility. About 5-10
process the received asynchronously. seconds worst case (bus, or train
signals from multiple Scaling decision | travelling between RAPs)
UE from more than one should be based on
RAP (MTPD, INS) current
computational
latency and next
state prediction
PHY User (UE) | HARQ must be sent 3 | Front-End new frame every | Scale infout may be dependent

ms after receiving the
frame

Convolution coding

Cloud or EDGE
cloud

10 ms (LTE radio
frame length) , but
events that results
capacity dependent
on UE mobility.

on UE mobility. About 5-10
seconds worst case (bus, or train
travelling between RAPs)

MAC
Cell/Schedulin
g Real Time

ICIC
Interference

(Intercell

Coordination)

Front-End
Cloud or EDGE
cloud

every 10 ms (LTE
radio frame length),
Works
cluster of

with a
RAP’s,
scaling events not
coming in peaks.

number of minutes in most cases,
dependent on UE mobility. About
5-10 sec

link adaptive part

antenna site

Dependent on
current antenna
measurements,

need to be
executed locally on
antenna site,

latency sensitive

10 ms

If implemented in proactive

fashion could be less time

sensitive

MAC User (UE)

UE Power control

EDGE cloud

LTE case it can
happen
maximum 1000
times within a
second per ue.
capacity is
Number of
users in 1ms

not coming in peaks, 5-10

seconds worst case

RLC

It includes processes
related to
segmentation/concate

nation of PDCP PDUs

EDGE cloud

depends on the
mobility and traffic
intensity of UE. For

the EDGE cloud

number of minutes to scale

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 24 of 88

based on information
exchange with MAC
PDCP.

modes are supported:

and Several
Transparent,
Acknowledged and
Unacknowledged. Each
case could be a

separate FB

slow change in
number of ue

associated with it.

PDCP transfer of user plane | EDGE cloud or | Depends on ue | scaling not strict time
Packet Data | data, transfer of | Central cloud activity levels, | constrained, and predictable.
Convergence control plane data, would change | number of times in a day
Protocol header compression, through the day in
ciphering, integrity predictable manner
protection. (peak in the
morning, less
activity in the night,
etc)
RRC Cell EDGE cloud or
Central cloud
RRC User (UE) | Handover UE | EDGE cloud or | about 30% of UE | scaling not strict time
measurements Central cloud are in the handover | constrained, number of times in a
reporting, QoS state, so with | day
management, paging central deployment
number of scaling
events in a day
NAS User (UE) | It refers to the user | EDGE cloud or | Asynchronous, scaling not strict time

procedures related to
signaling between the
UE and MME

Central cloud

NAS Core

MMEs load balancing,
MME overload control,
GTP-C
control...

signaling load

EDGE cloud or
Central cloud

depends on user
mobility. Because of
deployment on
central cloud slow
change in number
of the users in the

whole network

constrained, number of times in a

day

Table 2: C-RAN RFB requirements

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 25 of 88

g_/”j

—

2.6 Generic Technical Requirements — NFV vs. MEC

e =

NFVO only orchestrates Network Services (NS), not \MEQ orchestrates MEC Apps (MEC has no combination of
VNFs (for those are VNFMs) MEC Apps as NSs combine VNFs)

MEC has a service platform to provide services to Apps, which

NFV has no services platform to provide services
must be managed (access, auth, etc.)

The deployment details of NSs (e.g. location) can be The deployment details of a MEC App is only determined by
decided by the NFVO, but also by the VNFM the MEO

Mobility issues are not very relevant (although in some

) Mobility issues (state movement) are relevant
cases may arise)

Location issues are not always relevant (although in

Location issues are always relevant
some cases may happen)

Table 3: NFV vs MEC comparison

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 26 of 88

3 State of the art analysis

3.10penStack

311 OpenStack Virtual Infrastructure Management (VIM)

This section provides a summary of the capabilities exposed by the virtual infrastructure which are

relevant to the orchestration layer.

3.1.1.1 Network Traffic Control

Neutron has become OpenStack’s ‘networking as a service’ de facto project, and provides multiple
networking services, QoS is being one of the key features provided. The supported traffic control
requirements in Mitaka release are rate limiting answering [TControl-02], and the dynamic
activation/deactivation upon request [TControl-04]. However, on the downside the missing features
are bandwidth guarantee [TControl-01] and having a more mature traffic classification capability
[TControl-03] (e.g. layer 7), with the latter becoming an active discussion at the latest OpenStack
summit.

3.1.1.2 Scheduling parameters

In order for the orchestration layer to be able of making a ‘smart’ scheduling decision, the VIM has
to expose the required set of parameters for the orchestrator to take into an account. However, at
this point in time, most of the aren’t supported. On the upper side - requirements [AppSched-05]
(description of the virtualized resources) can be satisfied by the usage of templates provided by
such projects as Heat and Tacker as well as [AppSched-06] (Required network connectivity
description). However, on the downside requirement [AppSched-08] (Physical location
requirements) is hardly fulfilled. The possible solutions to accomplish that can be by made by the
usage of OpenStack’s Nova (compute project) regions and cells accompanied by custom Nova
scheduler filters, a solution we’re planning to research and experiment with in the following time
frames.

3.1.1.3 Mobility support

While the OpenStack Nova (compute) project provides support for a subset of functionality for
migrating VM instances from one physical host to another, it lacks some of the properties required
for full mobility support: [Mobility-01], [Mobility-02]. The user of the migration feature in its current
form cannot specify the physical host on which the VM will be migrated, as this decision is left out

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 27 of 88

to the scheduler. In addition to it, this process does not assume that the VM instance has sufficient
storage available on the target host, and potentially can fail.

3.1.1.4 KPI Support

A KPl is a metric used to evaluate factors that are crucial to the performance of a workload or
service. Operationally KPIs act as a simple set of indicators to measure data against -- a sort-of
service success gauge. In order to appropriately monitor and measure KPIs requires quantitative
and qualitative metrics. These metrics are typically captured through the use of telemetry providing
both platform and service level data.

Current service orchestration approaches are based on the use of pre-defined configurations for
the node(s) hosting the workloads. The Orchestrator then requests instantiation of the pre-defined
configuration to bring the workload into service on specific hardware platform, for instance through
usage of pre-compiled deployment templates (i.e. OpenStack Heat Orchestration Templates (HOT),
TOSCA descriptors, etc.). These templates are managed by orchestration platforms through the use
of catalogues, (for instance, OpenStack Murano project can be used to store and manage HOT
templates for OpenStack Heat). However, this approach does not scale efficiently. As the number of
different services to be supported by the platform increases as well as the granularity of service
specific KPIs (Key Platform Indicators) and SLOs (Service Level Objectives) it results in a huge
number of deployment templates to supported deployment of services. A more effect approach
maybe based around the use of dynamic template definitions at deployment time to meet specified
KPI’s as described in section 4.1.1.

3.2Cloudband

Cloudband management system is based on two main components, VNFM (VNF management) and
NFVO (NFV orchestrator). In the following we would focus on the VNFM.

Cloudband VNF management system is mostly based on OpenStack and open source services.
Specifically, on top of OpenStack main projects (NOVA, Neutron, Cinder and Glance) Heat is utilized
for VNF deployment and resource allocation. To further allow VNF lifecycle management we utilized
Mistral workflow engine that operates in conjunction with Heat. We note that the selection of a
workflow engine for a generic VNF management has been identified as an efficient approach in
terms of providing a quite broad generic management capabilities and with relatively low
complexity (Odini, Marie-Paule. "Short Paper: Lightweight VNF manager solution for virtual
functions." Intelligence in Next Generation Networks (ICIN), 2015 18th International Conference on.
IEEE, 2015).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 28 of 88

UI/CLI

—— M’-'fano ~
Application P@ Catalog Policies-
w _ WE- engine

> engine
VNF infrastructure N Misy,. 9
Biiin a

LCM
Playbook(s)

Contiguration

Cloud Resource [| FE——— [i Data Collector &
Data a q
o N Notification
e

Image
Configuration s

v

OpenStack (nova , neutrory..etc)

g

VMware (Vcenter ,NSX Corfroller..etc)
v -
v elfOn?e Fe,-
VN F 111 '
VNF-C VNF-C VNF-C

Figure 3: Openstack based generiv VNF management system

Figure 3 depicts the architecture for the VNF management system. As indicated, the architecture is
based on OpenStack services, such as: Heat, Mistral, Murano, Ceilometer, Vitrage and possibly
Congress. In addition, it utilizes Ansible as an open source configuration management. This
architecture can support all of the operations that are required for a VNF lifecycle management,
including deployment, monitoring, scaling healing and termination (as depicted in Figure 4).

ONBOARD

DEPLOY
TERMINATE

VNF life cycle
management

MONITOR

HEAL SCALE

Figure 4: VNF lifecycle operation

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 29 of 88

For example, Deployment takes place once the onboarding process is complete. Deployment entails
ensuring that the newly-introduced application is deployed with its name and the correct
environment, on the correct VMs, with the right IPs, etc.

After the onboarding process is complete, the second LCM stage —Deployment takes place (Figure
5).

7 J .‘ \
3
. @ CloudBand — Processes
s 4 & the recipe and policy files
s and deploys the
CBMS PL L} application accordingly

i
I
-
)
e g
iy
=

Distributes Cloud Carrier rt] r\r\’i

Figure 5: The deployment workflow

Only the customer user can deploy applications. There are two ways to deploy:
J From the Catalog (add application blueprint to the Catalog specified in onboarding)
. Direct deployment of Deploy Stack Directly on OpenStack Node

The HOT template is validated by OpenStack during deployment. No validation is performed when
the HOT template is onboarded.

After an application is deployed, a service will be created in the MY CLOUD > DEPLOYMENTS. Under
the service the customer user can see the stacks of the application.

For each deployment, a job will be created.

For the deployment to succeed, one should ensure that the Hot is valid and that all the required
resources for the stack are on the node (for example, the image).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 30 of 88

3.30penMano

OpenMANO implements components from the ETSI NFV MANO stack. Currently, the situation with
regards to the requirements outlined in Section 2 is the following:

3.3.1 Network Traffic Control

OpenMANO supports the definition of link parameters in the VNFD descriptor as well as in the
Network Scenario Descriptors (NSDs). They include the type of link (point-to-point, LAN-type, etc.)
as well as quality of service parameters

3.3.2 Scheduling parameters

Currently, OpenMANO does not support scheduling internally. However, the OpenMANO
component in the OpenMANO project controls a VIM where NFV services are offered including the
creation and deletion of VNF templates, VNF instances, network service templates and network
service instances using the openmano API. This can be used by other components to implement
scheduling.

3.3.3 Mobility Support

Currently, OpenMANO concentrates on creating NFV-based scenarios. As such, the VNFDs are static
and do not provide hooks to define mobility for the virtual machines (VMs) that are included in a
VNFD.

3.34 KPI Support

OpenMANO offers a northbound interface, based on REST (openvim API), where enhanced cloud
services are offered including the creation, deletion and management of images, flavours, instances
and networks. The implementation follows the recommendations in NFV-PEROO1.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 31 of 88

http://github.com/nfvlabs/openmano/raw/master/docs/openvim-api-0.6.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.02_60/gs_NFV-PER001v010102p.pdf

4 Management and Orchestration Design

This section intends to identify and describe the different available options regarding cloud
infrastructure, cloud infrastructure management and orchestration. We also discuss the pros and
cons and the best approaches to be followed by the project.

4.1 Cloud Infrastructure

The cloud infrastructure is the basis of the emerging cloud technology. It allows to create isolated
virtual entities, with compute, storage and networking capabilities, appearing as if they were
physical machines. The use of hypervisors (e.g. KVM, ESX) is still the most common virtualization
technology. However, container-based technologies (e.g. Kubernetes, Dockers*) are getting
momentum. ETSI NFV refers to this as NFV Infrastructure (NFVI); we will use this term from now on.

Independently of the virtualization technology in use, some architectural aspects need to be
discussed and decided, in the context of the project, in order to find the best approach that fits with
our requirements. Superfluidity shall support two different types of services: network functions
(e.g. eNB, EPC) and applications (e.g. MEC).

41.1 Dynamic Definition of Service Deployment Templates to Support KPls

In order to provide the intelligent of the orchestration process, automation is a key requirement to
determine the best composition of quantity and types of resources to be allocated to a service
according to its KPIs and SLOs and as a result to changing workload conditions due to user
interactions. Providing automated and performant deployments and scaling decisions will enable
both support for performance requirements and increased platform density in a scalable manner,
which will result in increased efficiency in the management of features exposed by the platform and
the infrastructure resources.

In the context of the Superfluidity project, the design and implementation of an automation
framework is being developed in order to automate some aspects related to the generation of
actionable insights for orchestration. The main goal, according to the premise above, is to
automatically define a set of rules that can be interpreted by an orchestrator in order to make
intelligent decisions with respect to the quantity and type of resources to be allocated to a service
hosted by a VIM (Virtual Infrastructure Manager). To achieve this goal, there are three steps that
must be automated and integrated in order to reduce the complexity of rules generation process:

e Execution of experiments which implement defined stress tests for VNF’s and application
workloads based on specific scenarios and deployment configurations of interest;

e Data collection using embedded telemetry systems and the automated discovery of
infrastructure elements which can support execution of a workload;

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 32 of 88

e Data analysis to extract orchestration insights from the data and generate deployment rules
to be used by orchestration platforms to make intelligent deployment decisions.

The general goal will be to generate an optimized version of a deployment template and the
storage of the template into the main template catalogue used within the project. The optimal
template could be given as the composition of the deployment configuration parameters and the
related values to be used at deployment time. They can be determined through the adoption of a
data analytics approach. For a given a service to be deployed, along with a list of KPIs/SLOs to be
satisfied and a default deployment template, an experimental protocol can be defined and
automated. Data analytics can be used to find potential mappings between the service specific
KPIs/SLOs and the different deployment configurations explored by the experimental protocol.

Template
Catalogue
(i.e. OpenStack Murano)
Default Optimal
deployment deployment
template template

Experiment Data Data

Execution Collection Analytics

Figure 6: General workflow of the proposed solution

Horizontal scaling is also very important from an intelligent orchestration perspective: horizontally
scaling a service involves either increasing or decreasing the number of resources to be used at
runtime to ensure KPIs and SLOs compliance considering dynamic variations of the workload and its
usage profile.

In order to explore the effects of horizontal scaling on a platform and on service performance, a
similar workflow to the one discussed above can also be used. This would be supported by a specific
experimental protocol and data analytics applied to the data collected during experiments.

The goal would be to find a mapping between the supported workload of the service and the
number of active instances to be instantiated to support the workload. The expected output then
would be the number of instance to activate with respect the current workload to be supported in
order to satisfy the SLOs.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 33 of 88

4.1.2 Option 1: One NFVI per Service

The easiest way to support different services is to use a separated cloud infrastructure (i.e. servers,
storage, network) (see Figure 7ERROR! REFERENCE SOURCE NOT FOUND.). However, this leads to an
nefficient use of resources, as there are no synergies between similar infrastructures. Furthermore,
for an operator, the management effort is considerably larger, as isolated silos need to be built.

Cloud Cloud Cloud Cloud Cloud

Infrastructure Infrastructure Infrastructure Infrastructure Infrastructure
(NFVI) (NFVI) (NFVI) (NFVI) (NFVI)

w m

Figure 7: Option 1: One NFVI per Service.

Conclusion: Inefficient and complex

4.1.3 Option 2: Common NFVI for all Services eventually locations

To increase efficiency and reduce complexity, it is preferable to have a common infrastructure,
which can be used to hold all kinds of services, eventually even in multiple locations (see sections
below). For this to be possible, it is required to ensure that all services can rely on similar
infrastructure standards. After some discussions among service specialists, we were not able to
identify any service specificities that prevent this approach. For this reason, it seems that the best
strategy is to have a common cloud infrastructure (NFVI) for all services. This model increases
efficiency and simplifies management. The ERROR! REFERENCE SOURCE NOT FOUND. depicts this view.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 34 of 88

Cloud Infrastructure (NFVI)

w m

Figure 8: Option 2: Common NFVI for all Services and eventually locations.

Conclusion: Preferred

4.2 Cloud Infrastructure Management

To manage a cloud infrastructure (NFVI) a controller/manager is required. This manager is
responsible to interact with the hypervisors and provide users with the capacity to manage (create,
remove, update and delete virtual resources (compute, storage, network). ETSI NFV refers to this as
Virtual Infrastructure Management (VIM); we will use this term from now on. Today, the reference
for this component is the open source OpenStack solution. Although there are others like OpenVIM,
OpenStack is clearly a de facto standard.

Assuming that a common NFVI can support all services (see section above), it is important to define
the strategy to efficiently support the management of resources spread across a large number of
datacenters (core and, especially, edges). As described below, there are several options, each with
pros and cons.

4.2.1 Option 1: One local VIM per NFVI

The simplest and most common approach is to use one VIM per NFVI, i.e. one manager/controller
per cloud infrastructure (datacenter). Following this approach, the VIM function is deployed locally
on the datacenter (e.g. edge) and manages all NFVI resources located there (see Figure 9ERROR!
EFERENCE SOURCE NOT FOUND.). This has the advantage of being a well-known and resilient approach, as
inter-datacenter connectivity is not required. However, it has two main disadvantages. Firstly, this
may lead to a large number of VIMs, making the life of the upper Orchestration layer more
complex, as it needs to interact with multiple VIMs endpoints. Secondly, the use of multiple VIMs
may prevent the use of some capabilities like “VM live migration” among different locations, which
may be an important feature. Up to now, it is not clear whether this feature is required and has

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 35 of 88

advantages when compared to other models (e.g. service migration at Orchestration level). Some
work still needs to be done to evaluate this.

Openstack Openstack Openstack Openstack Openstack

Controller Controller Controller Controller Controller

Figure 9: Option 1: One local VIM per NFVI.

Conclusion: Acceptable

422 Option 2: Single centralized VIM for all NFVIs

The use of a single VIM for all NFVIs located in multiple datacenters (core and edges) is another
option to consider. In this case, a single centralized VIM is able to manage all resources located in
different locations, providing an external view of a single and federated large datacenter (see Figure
10ERROR! REFERENCE SOURCE NOT FOUND.). The different locations can be identified, when needed, based
n regions. This approach has the advantage of simplifying the life for the Orchestration layer, as it
has a single VIM as endpoint, where all resources can be requested. On the other hand, it allows
the use of features like “live migration”, only possible within the same VIM domain, as referred
above. However, it has also some disadvantages. From one side, it makes the VIM operation more
complex, as it needs to manage a large amount of resources and locations. Furthermore, there may
exists some limitations on the number of managed resources. Finally, the manager/controller is no
longer local to the NFVI, resulting in traffic increase and delay for the actions to be taken, making
also appropriate connectivity a requirement. Anyway, today this seems to not be a hard limitation,
as services today already are highly connectivity dependent.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 36 of 88

Openstack Controller

Figure 10: Option 2: Single centralized VIM for all NFVIs.

Conclusion: Acceptable

423 Option 3: Hybrid Option 1 and Option 2

There is still a compromise approach between the two options referred above. In this hybrid
approach, multiple datacenters (NFVIs) are grouped into zones and managed by a single VIM (see
Figure 11ERROR! REFERENCE SOURCE NOT FOUND.). This option intends to take advantage of the best of
oth worlds, overtaking some limitations. The group sizing needs still to be defined, but it may
depend on a case by case. Compared to option 1, it reduces the number VIM endpoints to a more
reasonable number, making the Orchestrator’s task easier. On the other hand, it allows users to
take advantage of features like “live migration” within the same zone; if groups are properly
defined, it can lead to a good tradeoff. Compared to option 2, it can reduce overall complexity and
overtake any resource management limitations. In this option, the manager is also no longer local
to the NFVI; however, this seems not today a hard limitation as stated above.

Note that in the two extreme cases, this solution is similar to the previous options. If groups are
very small, we may lead to groups of a single NFVI, meaning Option 1. On the other extreme, large
groups may lead to a single group, meaning Option 2. With this flexibility, it is reasonable to
consider this the best option.

Openstack Controller Openstack Controller

Figure 11: Option 3: Hybrid Option 1 and Option 2.

Conclusion: Preferred

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 37 of 88

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 38 of 88

4.3 Cloud Management and Orchestration

Running on top of Cloud Management, the Orchestration layer is responsible to build complex
services by combining and interconnecting the required pieces, on the right locations. Among other
things, the Orchestration is able to select the appropriate resources in the right place, based on
predetermined constraints. For this, it requires interaction with VIMs. However, as Orchestration
can be a very complex task, it will not be simply a single piece, but a set of them, dealing partially
with the Orchestration tasks. This section discusses some Orchestration strategies and how do they
map to the Infrastructure Management (VIMs).

43.1 Option 1: One Orchestrator for all Services and locations

A simple approach to orchestrate all Services in all locations is to use a single Orchestrator. One
multi-purpose Orchestrator can deal with all resources and has the advantage of having an overall
view of all services, taking eventually advantage of some synergies from that. This model is depicted
in Figure 12ERROR! REFERENCE SOURCE NOT FOUND.. However, the Orchestrator needs to deal with
ervice specificities and it may be hard to have a common Orchestrator to handle all that. On the
other hand, in real world, different vendors provide different Services, and it is very likely each one
brings its own Orchestration for his particular Service. In that case, this solution can be hard to
achieve, both technically and commercially.

Orchestrator
NFV/MEC

vIM WNovis) vim)
penStack) NStack} "\(.QE:Stack}

(VIM ([~

(O ack) /

o VAN VAN J\ J

Figure 12: Option 1: One Orchestrator for all Services and locations.

Conclusion: Non-realistic

4.3.2 Option 2: One Orchestrator per Service

Another approach is to use different Orchestrators to comprise the overall Orchestration layer. In
this case, each Orchestrator is in charge of part of the overall Orchestration tasks (see Figure

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 39 of 88

(o

13ERROR! REFERENCE SOURCE NOT FOUND.). As state above, a dedicated Orchestrator per Service seems a
ealistic approach; however, other options may also be reasonable. For example, if a vendor
provides the C-RAN and the Core, maybe a single Orchestrator can take care of both. Similarly, if an
operator has multiple C-RAN vendors, which is common, different Orchestrators may be needed for

the same service, one for each particular vendor.

Orchestrator Orchestrator Orchestrator Orchestrator
C-RAN i MEC CORE DCVNFs
V V

(™ Vi
enStack) (OpenStac (OpenBtack) (Openstack)

VAN VAN J\ y

Figure 13: Option 2: One Orchestrator per Service.

Conclusion: Preferred

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 40 of 88

4.40rchestration Layer

As described in the section above, the Orchestration layer may be composed by multiple
Orchestrators, each of them devoted to a particular part of the Orchestration tasks/domains,
namely to a particular Service (and from a particular vendor). In this situation, it is relevant to
discuss how these Orchestrators can talk to each other and how an operator can have a global view
and control about the Services. This section discusses the available options and interfacing models
that can be used for this purpose.

44.1 Option 1: Northbound and Southbound Interfaces

One possible option leads to the creation of a Top Orchestrator, which integrates all the Service
Orchestrators. In this case, Service Orchestrators interact with the Top Orchestration using a
Northbound interface (Southbound interface from the Top Orchestrator perspective). For this
option, the interaction between Service Orchestrators is not required, as everything is coordinated
via the Top Orchestrator. Here, the Operator will own the Top Orchestrator and must integrate it
with all Service Orchestrators. The ERROR! REFERENCE SOURCE NOT FOUND. depicts this hierarchical
odel.

Orchestrator
(Top)

Orchestrator Orchestrator Orchestrator Orchestrator
C-RAN MEC CORE DCVNFs

Figure 14: Option 1: Northbound and Southbound Interfaces.

Conclusion: Acceptable

4.4.2 Option 2: Eastbound and Westbound Interfaces

Another option is to make Service Orchestrators to integrate with each other’s, using East and
Westbound interfaces, in order to build an overall service. In this case, Service Orchestrators need
to potentially integrate with all (or at least some) of the other Service Orchestrators, making things
apparently more difficult and complex (more integrations required — partial/full mesh). On the
other hand, the operator does not have any central Orchestration point where he can control the
whole system, but instead multiple Orchestrations, one per Service, which in some cases, may
difficult obtaining a global orchestration view. ERROR! REFERENCE SOURCE NOT FOUND. Depicts this peer-
o-peer model.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 41 of 88

Orchestrator Orchestrator Orchestrator Orchestrator
C-RAN . : y ; CORE y d pcunes
Figure 15: Option 2: Eastbound and Westbound Interfaces.

Conclusion: Difficult

443 Option 3: Hybrid Option 1 and Option 2

There is still a compromise approach between the two options referred above. In this approach, a
Top Orchestrator integrates all Service Orchestrators (interfaces Northbound and Southbound) in a
central Orchestration point. This approach reduces the number of integrations required and
provides to the operator an overall Orchestration view. Additionally, Eastbound and Westbound
interfaces can be used in order to improve the efficiency of the system, in cases where the
integration is preferable between Service Orchestrators. The number of interactions among Service
Orchestrators and between Service Orchestrators and the Top Orchestrator will depend on the
particular cases. The ERROR! REFERENCE SOURCE NOT FOUND. depicts this hybrid model.

(1)
Orchestrator
(Top)

Orchestrator
C-RAN

Orchestrator

Orchestrator
CORE

Orchestrator
DCVNFs

Figure 16: Option 3: Hybrid Option 1 and Option 2.

Conclusion: Preferred

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 42 of 88

5 Management Tooling

5.1MicroVisor Orchestration

One of the most challenging requirements captured in Section 2 is [AppSched-03], that states that
an application must be provisioned in <10ms. For a VIM such as OpenStack, this poses a number of
challenges as this Python-based framework was designed for ‘traditional’ VMs that usually comprise
a Linux or Windows-based guest OS. These VMs are heavy-weight and need miniaturization before
they could start in the order of seconds. Containers and other light-weight virtualization techniques
as those currently investigated in Superfluidity can start up much faster. When looking to approach
fast provisioning and orchestration tools it is important to profile all aspects of the virtualization
workflow. This will be reported by T5.2, where an analysis of different virtualization techniques is
being carried out.

In order to support <10ms provisioning times it is important to consider the design of the
orchestration platform and to remove overheads. The MicroVisor, Hypervisor platform that OnApp
are bringing to Superfluidity is purpose-built, light-weight, distributed and focused on maximising
the performance of virtual workloads running on distributed resources. As such, there have been
improvements carried out to the MicroVisor orchestration framework that can be used to help
decide on decisions for the rest of the Superfluidity orchestration tools. The MicroVisor Ul is based
on OpenStack and has had various improvements to be able to manage the expected workloads of
Superfluidity.

5.1.1 Ul design for managing a large collection of resources

Virtual workloads that are going to load in <10ms are potentially going to be far more numerous
than standard visualization approaches currently account for. Horizon, which is the OpenStack
Dashboard can handle the scale of Virtual Machines that currently are used by large enterprises,
but will likely have some scalability issues when faced with orders of magnitudes more VMs than
are currently used. A rethink of the Ul is therefore needed for it to display the information available
to administrators and end-users in a useful manner.

Computer assisted workload placement will therefore move from being just an optimization effort,
to being a tool to help manage the workloads at the scales that are expected. A mockup diagram
showing a possible visualization of the physical to virtual workloads is shown in Figure 17Error!
eference source not found.. This Figure captures the physical, network overlay and virtual resources
and how they relate to each other. The work is ongoing to determine which visualization
mechanisms users and administrators will find useful.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 43 of 88

Instances

HighDensity

HighDensity

Storage

Deadbeef

65% 85%
4GB 20TB

SanDisk Seagate Seagate Seagate

Seagate Seagate Seagate

579279456

SanDisk Seagate Seagate Seagate

85%
2078

Seagate Seagate Seagate

37.5%
30TB

@ Seagate

@ Seagate

® Seagate

@ Seagate

tal

® WesternDigital

® WesternDigital

& WesternDigital

Highperf-datastore

® WesternDigital Medium-density

Low-density

reserved
.

® WesternDigital

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 44 of 88

PerrenicalFisherX34DM

Network

Virtual Servers

Virtual Server Overlay Ubtntuzaom

Virtual Compute Network
100GiB Port 10GiB Port

Virtual Network Overlay

Physical NICs

4MDSN NIC 9ZMEN NIC

MSI24 NIC X34DM NIC

$§S234 NIC
Physical Network Overlay

Figure 17: Mock-up diagram showing a Ul that relates virtual to physical resources

In Error! Reference source not found. a visualization mock-up of the administration panel is shown.
n this visualisation, the physical racks have a number of rack servers that are numbered and can be
probed for more information. Each rack then has a number of compute nodes that can be
contained within a single physical server. The CPU load of each compute unit is then visualised, with
standard traffic light colouring used to indicate low-utilisation (green), through to heavily loaded
compute units (red). This gives an administrator a powerful tool to quickly identify if there are any
servers that are struggling and to indicate issues that potentially need to be resolved either through

computer assisted orchestration, or manual intervention.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 45 of 88

Infrastructure

Density

= Filter O\ ® 0~ 1000 ® 1001 ~ 2000 @® 2001 ~ 3000 ® 3001 ~ 4000 4001 ~ 5000

Perrenicalfisher-32msux
Rack 2, Row &

245

Instances

4 5 6
L L L
I I I
L L I

I I I I
I L L I
I I I I I
I I I I I
I I I I I
| | | | |
L I L | .| I
I I I I I
I L L L

I I I I

I L L L L
I I I I
I L L L I
I I I I I
I L L L I

Figure 18: Mock-up diagram showing the rack utilization

Aside from the physical to virtual mapping and CPU load that have been shown in the previous
Figures, it is also important to show the utilization of the storage resources. A mock-up Figure
showing the utilization of the storage can be seen in Figure 19Error! Reference source not found..
isks that are close to being full are shown in red with the less utilized disks being coloured in blue.
All of the storage resources are associated with particular racks and are separated accordingly. Also
shown in the diagram is the notion of tiered storage performance levels. Given that certain
virtualized workloads may have different I/O requirements it is important for the system to indicate
different performance levels. This information can be captured in the data models in T4.1 and then
analysed by the algorithms and heuristics in T5.1 to decide on where to place the workloads.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 46 of 88

Instances

HighDensity

HighDensity

Storage

Deadbeef

65% 85% 51% Highperf-datastore
4GB 2078 30TB 30TB

SanDisk Seagate Seagate Seagate ® Seagate ® WesternDigital ® WesternDigital Medium-density

85% 51% 51% Low-density
20TB 3ATB 30TB

Seagate Seagate Seagate ® Seagate ® WesternDigital -

579279456

65%
4GB 2078

SErLE Seagate Seagate Seagate ® Seagate ® WesternDigital @ WesternDigital

85% 51%
2078 3078 30TB

Seagate Seagate Seagate ® Seagate ® WesternDigital

Figure 19: Mock-up diagram showing the storage utilization in the management U/

Given that SDN networking will also allow reconfiguration of a network, it is important for both the
management platform and the orchestration system to be able to capture and possibly modify the
network topology. This will allow maximization of the performance for a given set of workloads and
configurations decided by the administrator. In Error! Reference source not found. a mock-up of the
etwork mapping Ul is shown. This can be used to visualize the current network topology and also
could be used to capture modifications required of the network that could be then mapped to the
network routers and hypervisors through tools such as OpenDaylight or others.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 47 of 88

Networks

Manage

diagram_1

+

Figure 20: Mock-up showing the network planner Ul

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 48 of 88

6 Conclusion

This document provides a report on the ongoing progress of Task 6.1 in Superfluidity project. The
progress has been made on several challenges: recognition of the requirements from the control
framework, analysis of the existing work of MEC workgroup, looking into subset of the currently
existing solutions on the market and highlighting the gaps between the requirements and the
solutions. A very important progress has been made on the management and orchestration design
side, as introduced in Section 4 and on the follow up side the work in that direction will split
between the selection from the described models, estimation of the virtual infrastructure work
effort to provide support for the missing features and an implementation for a subset of those
features.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 49 of 88

7 References

[1] Mobile Edge Computing (MEC); Technical Requirements
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_ MEC002v010101p.pdf

[2] Mobile Edge Computing (MEC); Framework and Reference Architecture

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 50 of 88

8 Annexes

8.1Detailed Orchestration Requirements

This annex intends to collect the most relevant NFV and MEC Management and Orchestration
requirements, in order to assist on the evaluation of available tools (open source or others in the
market) to select which can be used by the project. Ideally, we expect to be able to use the same
tools for both, as they share many commonalities, even though there are also some specificities. At
the time or writing this document, there is an ongoing work (Work Item), within the ETSI MEC
group, in order to perform the gap analysis between NFV and MEC management and orchestration,
evaluating whether existing NFV tools can be reused in co-located MEC deployments.

Note: The requirement definitions are compliant with [RFC2119].
8.1.1 NFV

8.1.1.1Generic

[NFV-Generic-01] The NFVO MUST perform three main functions:

e VNFs and NSs on-boarding

e Resources orchestration

e NS orchestration
[NFV-Generic-02] The VNF/NS on-boarding function MUST load into the NFV ecosystem the NFV/NS
metadata and images to make them ready to be deployed.
[NFV-Generic-03] The Resources Orchestration function MUST interact with the NFVI (via VIM),
managing the resources associated to NSs (e.g. create, query, terminate).

[NFV-Generic-04] The NS orchestration function MUST perform NS lifecycle management (LCM).

8.1.1.2Repositories

[NFV-Repositories-01] The NFVO MUST be associated to the following repositories:

e VNF Catalogue, which stores the catalog of deploy-able VNFs

e NS Catalogue, which stores the catalogue of deploy-able NSs (VNFs, VLDs, VNFFGDs, PNFDs)

e NFV Instances, which stores the instance records of VNFs and NSs already deployed

e NFVI Resources, which stores the available, reserved and used resources used by VNFs/NS
[NFV-Repositories-02] The VNF Catalogue repository MUST store the list of deploy-able VNFs,
storing a record per VNF with the following information (among many other):

e VNFD (VNF Descriptor)

o Software version

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 51 of 88

Virtual links and connection points
VNF Monitoring metrics/KPls
VNF LCM policies and scripts
List of VNFCs/VDUs
= Version
= CPU
= Memory

o O O O

= Storage
= Monitoring
= |CM policies
o List of software images (1 per VDU)
[NFV-Repositories-03] The VNF Catalogue MUST be accessible by:

e The VNFO (rw, master). Example functions: on-boarding, obtain required resources, etc.

e The VNFMs (ro). Example functions: obtain VNF details like, VDU specs, LCM policies, etc.
[NFV-Repositories-04] The NS Catalogue repository MUST store the list of deploy-able NSs, storing a
record per NS with the following information (among many other)

e NSD (NS Descriptor)

Version
List of VNFDs
= (see above)
o List of PNFDs (PNFDs)
= Software version

O

O

= Connection point
o List of VNFFGDs (VNF Forwarding Graphs Descriptors)
= List of VNFs
= Forwarding path
o List of VLDs (VL Descriptors)
= VLANID
= Connectivity Type
o NS Monitoring metrics/KPlIs
o NS LCM policies and scripts

[NFV-Repositories-05] The NS Catalogue MUST be accessible by

e The VNFO (rw, master). Example functions: on-boarding, get infrastructure resources, get
list of NFVDs, PNFDs, VLDs or VNFFGDs.
[NFV-Repositories-06] The NFV Instances repository MUST store the list of deployed VNFs and NSs,
storing a record per VNF (VNFR) and NS (NSR) with the following information (among many other)*
e VNFR

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 52 of 88

ID

Software version
Referenced VNFD
Managed VNFM
Parent NS
VIM/Localization
List of VLs

IP address

Active monitoring
Status

o O 0 0o 0 o 0 o o o

e NSR
ID
o List of VNFRs
= (see above)
o List of PNFRs

= Parent NS

= VNFFG

= |P Address
o List of VLRs

= Parent NS

= \/IM/Location
= QoS allocated
o List of VNFFGRs
= Parent NS
= Forwarding path
o Active monitoring
o Status
[NFV-Repositories-07] The NFV Instances repository MUST be accessible by:
e The NFVO (rw, master). Example functions: store VNF/NS instance records, update VNF/NS
instance records, get VNF/NS instance records.
Note: The VNFM could make sense here to access VNF instances, but in the MANO specs
there is no interface for that.
[NFV-Repositories-08] The NFVI Resources repository MUST keep track of available, reserved and

allocated resources, in particular regarding:

e Available links
e Available CPU

e Available Memory

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 53 of 88

e Available Storage

e Reserved VLs

e Reserved VMs

e Reserved virtual storage
e Allocated VLs

e Allocated VMs

e Allocated virtual storage

[NFV-Repositories-09] The NFVI Resources MUST be accessible by
e The VNFO (rw, master). Example functions: store resources, update resources, get reserve
resources.

[NFV-Repositories-10] The NFVO MUST be able to correlate the NS/VNF instances records in the
NVF Instances repository with the corresponding virtual resources in the NFVI Resources repository.

8.1.1.30n-boarding

[NFV-Onboarding-01] The NFVO MUST on-board VNFs and NSs packages before they become
available to be used/deployed in the NFV ecosystem.
[NFV-Onboarding-02] The NFVO SHOULD perform other actions than on-boarding regarding VNFs
and NSs packages

e Disable VNF/NS packages, to deactivate temporarily the availability of VNFs/NSs

e Enable VNF/NS packages, to activate the availability of VNFs/NSs

e Update VNF/NS packages, to upgrade VNFs/NSs (descriptors and/or software images)

e Query VNF/NS packages, to inquire information about descriptors and images

e Delete VNF/NS packages, to remove VNFs/NSs (descriptors and software images)
[NFV-Onboarding-02] The NFVO MUST be able to deal with multiple infrastructure domains
(VIMs/NFVIs).
[NFV-Onboarding-03] The VNFs on-boarding process MUST include the following actions

e Validating the correctness of the VNFD descriptor;

e Validating the correctness of the VDU constructs;

e Validating the correctness of the images;

e Storing the VNFD into the VNF Catalogue;

e Storing the VDU into the VNF Catalogue;

e Copy all VNF images to (potential) target VIMs (not mandatory at on-board time, but highly
RECOMMENDED)

e Validating the correctness of the VNF functionality*;
* This step MAY be done at different stages.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 54 of 88

[NFV-Onboarding-04] The NSs on-boarding process MUST include the following actions
e Validating the correctness of all descriptors (NSDs, VNFFGs and VLDs**);
e Validating the existence of the VNFs**;
e Validating the correctness of the NS functionality®;
e Storing all associated descriptors (NSDs, VNFFGs and VLDs*) in the NS Catalogue;
* This step MAY be done at different stages.
** Assuming VNFs have being already on-boarded (it MAY also be done altogether).

8.1.1.4 Instantiation

[NFV-Instantiation-01] The NFVM MUST support the on-demand instantiation of new VNFs under
NFVO request (under the scope of an NS instantiation).
[NFV-Instantiation-02] The NFVM MUST support the VNF instantiation, using the descriptor (already
on-boarded).
[NFV-Instantiation-03] The NFVM MUST validate whether the target VNF is available in the VNF
Catalogue.
[NFV-Instantiation-04] The NFVM MUST create the infrastructural resources for the VNF

e Option 1—Reservation on MEQ, allocation on VIM, completion notification on MEO

e Option 2 —-Via NFVO
[NFV-Instantiation-05] The VIM MUST validate and authorize the VNFM requests of resources (in
Option 1).
[NFV-Instantiation-06] The VIM MUST validate and authorize the NFVO requests of resources (in
Option 2).
[NFV-Instantiation-07] The NFVO MUST validate and authorize the VNFM requests of resources (in
Option 2).
[NFV-Instantiation-08] The NFVM MUST add to the NFV Instances repository the new VNF instance
record once the deployment is completed.

e Option 1 - Directly on the NFV Instances repository and notifying the NFVO

e Option 2 —Via NFVO
[NFV-Instantiation-09] The NFVM MUST access the VNF instance (or EM) to perform setup
configurations once VNFCs are up and running, if required.
[NFV-Instantiation-10] The NFVO MUST instantiate on-demand new NSs, on OSSs requests.
[NFV-Instantiation-11] The NFVO MUST instantiate NSs, using the NS related descriptors (already
on-boarded).
[NFV-Instantiation-12] The NFVO MUST validate whether the NS is available in the NS Catalogue.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 55 of 88

[NFV-Instantiation-13] The NFVO MUST request to the correspondent VNF Managers the creation
of the required VNFs.

[NFV-Instantiation-14] The NFVO MUST create resources on behalf the VNF Managers (Option 2) or
get notified/make reservations about the creation of resources by the VNFMs (Option 1).

[NFV-Instantiation-15] The NFVO MUST request to the correspondent VIMs (descriptors MUST
identify location, directly or indirectly) the creation of the required infrastructure, namely VLs and
VNFFGs.

[NFV-Instantiation-16] The VIM MUST validate and authorize the NFVO’s or VNFM’s requests or

reservation of resources.

[NFV-Instantiation-17] The NFVO MUST add to the NFV Instances repository the new NS instance
once the NS deployment is completed.

[NFV-Instantiation-18] The NFVO MUST update the NFV Instances repository with the new NS
instance — on the VNFM behalf (Option 2) or be notified of that (Option 1) — once the NS
deployment is completed.

8.1.1.5Monitoring

[NFV-Monitoring-01] The VNFM SHOULD get infrastructural metrics, alerts and KPIs from VIMs.
[NFV-Monitoring-02] The NFVO MUST get infrastructural metrics, alerts and KPIs from VIMs.
[NFV-Monitoring-03] The NFVM SHOULD get service alerts, metrics and KPIs from VNF instances (or
EMs).

[NFV-Monitoring-04] The NFVO MUST get service alerts, metrics and KPIs from VNFMs regarding
VNF instances.

[NFV-Monitoring-05] The OSSs MUST get alerts, metrics and KPIs from VNF instances (or EMs) or
VNFOs.

[NFV-Monitoring-06] The VNFM and VNFOs SHOULD use metrics, alerts and KPIs for multiple
purposes

e Fault detection, correlation and recovery

e Performance Management

e Scaling in/out/down/up

e Logging and statistics

[NFV-Monitoring-07] The File descriptors (VNFD, NSD, etc.) MUST be able to describe metrics, alerts
and KPIs and associated respective thresholds (SLAs).

8.1.1.6 Modification

[NFV-Modification-01] The VNF instances MAY be modified by VNFMs during runtime operation in
multiple ways

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 56 of 88

e Scalingin/out/down/up

e Fault detection, correlation and recovery

e Moving (all or some composing VNFCs) to another location

e Live Upgrade (to a new software version)
[NFV-Modification-02] The VNFM SHOULD perform scaling in/out/down/up on either NFVO or Back-
office request.
[NFV-Modification-03] The VNFM MUST perform scaling in/out/down/up automatically, triggered
by the analysis on monitoring data or other information, and according to the policies defined on
the VNFD.
[NFV-Modification-04] To perform VNF scaling in/out/down/up, VNFMs MUST allocate or dispose
infrastructural resources — directly on VIMs or via NFVO — and access to the VNFCs for service
reconfiguration.
[NFV-Modification-05] The VNFM SHOULD perform fault detection and self-healing based on
monitoring data.
[NFV-Modification-06] To perform full or partial VNF relocation, VNFMs MAY

e Option 1 — Perform VNFCs live migration and perform any required VNFCs reconfiguration.

e Option 2 — Create new VNFCs and VLs in the new location and dispose VNFCs and VLs in the

old location, and access to the new VNFCs for service reconfiguration.

[NFV-Modification-07] The VNFM SHOULD perform upgrades on NFVO demand.
[NFV-Modification-08] NS instances SHOULD be modified by the NFVO during runtime operation in
multiple ways

e Scaling in/out/down/up composing VNFs

e Fault detection, correlation and recovery

e Moving (all or some composing VNFs) to other locations

e Change VLs and VNFFGs
[NFV-Modification-09] The NFVO MUST perform scaling in/out/down/up of composing VNFs, VLs or
VNFFGs on OSSs request.
[NFV-Modification-10] The NFVO MUST perform scaling in/out/down/up of composing VNFs, VLs or
VNFFGs automatically, triggered by the analysis on monitoring data or other information, and
according to the policies defined on NSD.
[NFV-Modification-11] The NFVO SHOULD perform fault detection and self-healing based on
monitoring data.
[NFV-Modification-12] The NFVO MUST move some VNFs to other locations and relocate
VLs/VNFFG, either automatically — according to NSD policies - or on OSS request.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 57 of 88

[NFV-Modification-13] The NFVO MUST modify the VLs or VNFFG, either automatically — according
to NSD policies — or on OSS request. Examples functions: link bandwidth, VNFFG connection points.

8.1.1.7Termination

[NFV-Termination-01] The VNFM MUST terminate on-demand existing VNF instances (on VNFO
request).
[NFV-Termination-02] The VNFM MUST validate whether the VNF is available on the NFV Instances
repository.
[NFV-Termination-03] The VNFM MUST dispose the infrastructural resources of the VNF

e Option 1 — Directly to the VIM, notifying the NFVO

e Option 2 -Via NFVO
[NFV-Termination-04] The VIM MUST validate and authorize the NFVM requests to dispose
resources (Option 1).
[NFV-Termination-05] The NFVO MUST validate and authorize the NFVM requests to dispose
resources (Option 2).
[NFV-Termination-06] The VNFM MUST remove from the NFV Instances repository the VNF
instance record once the disposal is completed.

e Option 1 — Directly on the NFV Instances repository and notifying the NFVO

e Option 2 -Via NFVO
[NFV-Termination-07] The NFVM SHOULD access the VNF instance (or EM) to perform termination
procedures.
[NFV-Termination-08] The NFVO MUST dispose existing NSs on OSS request.
[NFV-Termination-09] The NFVO MUST validate whether the NS is available on the NFV Instances
repository.
[NFV-Termination-10] The NFVO MUST request to the correspondent VNFM the disposal of the
VNFs.
[NFV-Termination-11] The NFVO MUST request the disposal of resources on behalf of VNFMs
(Option 1) or be notified about the disposal of resources by VNFMs (Option 2).
[NFV-Termination-12] The NFVO MUST request to the correspondent VIMs the disposal of the
resources, namely VLs and VNFFGs.
[NFV-Termination-13] The VIM MUST validate and authorize the NFVO and VNFM requests for
resources disposal.
[NFV-Termination-14] The NFVO MUST remove from the NFV Instances repository the NS instance
once the NS disposal is completed.

[NFV-Termination-15] The NFVO MUST remove from the NFV Instances repository the NS instance
record once the disposal is completed.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 58 of 88

8.1.2 MEC

8.1.2.1Generic

[MEC-Generic-01] The MEC System MUST perform application lifecycle management actions: on-
boarding, instantiation, modification and termination.

[MEC-Generic-02] The MEC System MUST perform application security actions: authentication,
authorization.

[MEC-Generic-03] The MEC System SHOULD support mobility of UEs, i.e. the ability to support the
same MEC application on different MEC hosts, managing the seamless handover (from one cell to
another associated or not with the same MEC host).

[MEC-Generic-04] The MEC System MUST perform with MEC App orchestration.

[MEC-Generic-05] The MEC System MUST perform with resource orchestration.

[MEC-Generic-06] The MEC system MUST have information about the mobile edge system (e.g. list
of edges, available services, mapping to mobile network access points).

[MEC-Generic-07] The MEO MUST interact with the VIM for resources management (e.g. CRUD).
[MEC-Generic-08] The MEO MUST interact with the MEPM for MEC App Lifecycle management
(LCM) and Platform Management.

8.1.2.2 Repositories

[MEC-Repositories-01] The MEO MUST be associated to the following repositories
e MEC App Catalogue, which stores the catalog of the deployable MEC apps (app, rules,

requirements such as required resources, maximum latency, required or useful services,
etc.)
e MEC Hosts Inventory, which stores the list of MEC hosts (mapping between Cell IDs” and
MEC Servers) and the list of available services per host (RNIS, LOC, DNS, etc.)
e MEC App Instances, which stores the instance records of MEC apps running at MEC hosts
e MECI (MEC Infrastructure) Resources, which stores the available, reserved and used
resources used by MEC apps in all MEC Hosts
[MEC-Repositories-02] The MEC App Catalogue repository MUST store the list of deployable MEC
Apps, storing a record per MEC App with the following information (among many others)

e MEC App Descriptor
o MECAppID
o Software version
o List of dependencies (required MEC services that are needed for the mobile edge
application to be able to run)

o Virtual links and connection points

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 59 of 88

o

o O O O

©)

List of AppCs/VDUs
= Version
= CPU
= Memory
= Storage

= Monitoring
= |CM policies
List of software images (1 per VDU)
MEC App monitoring metrics/KPls
MEC App LCM policies and scripts
List of requirements on connectivity (connectivity to applications/services within the
MEC system, to local networks, or to Internet)
List of requirements on mobility (e.g. application state relocation, application
instance relocation)
List of MEC App SLA requirements (latency, throughput, ...)
DNS mapping
TOF rules

[MEC-Repositories-03] The MEC Hosts Inventory repository MUST store the list of MEC Hosts,
storing a record containing available Hosts and mapping to Cell-IDs per Host (among others)

e MEC Host record

©)

©)

Services List
Serving Cell-IDs

[MEC-Repositories-04] The MEC App Instances repository MUST store the list of MEC Apps, storing
a record per MEC App with the following information (among many other):

e MEC App instance record

(@]

0O O O O O O O

o

ID

Software version

Referenced MEC App Descriptor
Managing MEPM

VIM/Location

List of VLs, VDUs and Connectors
IP address

Active monitoring metrics/KPls
Status

[MEC-Repositories-05] The MEC Resources repository MUST keep track of available, reserved and

allocated resources, in particular

e Available links

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 60 of 88

e Available CPU

e Available Memory

e Available storage

e Reserved VLs

e Reserved VMs

e Reserved virtual storage

e Allocated VLs

e Allocated VMs

e Allocated virtual storage
[MEC-Repositories-06] The MEO MUST be able to correlate the MEC App instances records in the
MEC Instances repository with the corresponding virtual resources in the MEC VIM Resources

repository.

8.1.2.30n-boarding

[MEC-Onboarding-01] The MEO MUST on-board MEC App packages before they become available
to be used/deployed in the MEC system. The on-boarding includes loading application image and
application descriptor. The MEC App on-boarding process includes the following actions:

e MEC App Description validation

e Validation of application images

e Store the MEC App Descriptor in the MEC App Catalogue

e Store MEC App images in the MEC App Catalogue repository
e Copy MEC App images to (potential) target VIMs*

* This step MAY be done at different stages.
[MEC-Onboarding-02] The MEO SHOULD perform other actions regarding MEC App packages:
e Enable, to activate temporarily the availability of MEC App instantiations
e Disable, to deactivate temporarily the availability of MEC App instantiations
e Update, to update MEC App (descriptors and/or software images versions)
e Query, to get information about descriptors and images

e Delete, to remove MEC App (descriptors and images) from Catalogue

8.1.2.4 |nstantiation

[MEC-Instantiation-01] The MEPM MUST support MEC App instantiation, using the MEC App
descriptor and images (already on-boarded).
[MEC-Instantiation-02] The MEPM MUST support MEO on-demand instantiation of a new MEC App.

[MEC-Instantiation-03] The MEPM MUST create the infrastructural resources for the MEC App,
according to MEQ instructions

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 61 of 88

e Option 1 —Reservation on MEQO, allocation on VIM, completion notification on MEO

e Option 2 —Via MEO
[MEC-Instantiation-04] The VIM MUST validate and authorize MEPM requests of resources (in
Option 1).
[MEC-Instantiation-05] The VIM MUST validate and authorize the MEPM requests of resources (in
Option 1).
[MEC-Instantiation-06] The VIM MUST validate and authorize the MEO requests of resources (in
Option 2).
[MEC-Instantiation-07] The MEO MUST validate and authorize the MEPM requests of resources (in
Option 2).
[MEC-Instantiation-08] The MEO MUST check resources availability in its MECI Resources
repository.
[MEC-Instantiation-09] The MEO SHOULD check resources availability with the VIM.
[MEC-Instantiation-10] The MEPM MUST add MEC App instances to the MEC App Instances
repository, once the deployment is completed:

e Option 1 — Directly on the MEC App Instances repository, notifying MEO

e Option 2 —Via MEO
[MEC-Instantiation-11] The MEPM MUST access the MEC App instance to perform setup
configurations once it is up and running, if required.

8.1.2.5Monitoring

[MEC-Monitoring-01] The MEPM SHOULD get infrastructural metrics, alerts and KPIs from VIMs.
[MEC-Monitoring-02] The MEPM SHOULD get service alerts, metrics and KPIs from MEC App
instances and/or MEC services.
[MEC-Monitoring-03] The MEO MUST get infrastructural metrics, alerts and KPIs from VIMs.
[MEC-Monitoring-04] The MEO MUST get service alerts, metrics and KPIs from MEPM regarding
MEC App instances and/or MEC services.
[MEC-Monitoring-05] The OSSs MUST get alerts, metrics and KPIs from the MEPM and/or MEO.
[MEC-Monitoring-06] The MEPM and MEO SHOULD use metrics, alerts and KPIs for multiple
purposes

e Fault detection, correlation and recovery

e Performance Management

e Scaling in/out/down/up

e Logging and statistics

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 62 of 88

[MEC-Monitoring-07] The MEC App descriptor MUST describe metrics, alerts and KPIs and
associated respective thresholds (SLAs).

8.1.2.6 Modification

[MEC-Modification-01] The MEC App instances SHOULD be modified by MEPM during runtime
operation in multiple ways

e Scalingin/out/down/up

e Recovery from failure or degradation

e Live Upgrade
[MEC-Modification-02] The MEPM SHOULD perform scaling in/out/down/up on either MEO or
Back-office (MEPM GUI interface) request.
[MEC-Modification-03] The MEPM MUST perform scaling in/out/down/up automatically, triggered
by the analysis on monitoring data or other information, and according to the policies defined on
the MEC App Descriptor.
[MEC-Modification-04] To perform MEC App scaling in/out/down/up, MEPM MUST allocate or
dispose infrastructural resources (directly on VIMs or via MEQO) and perform MEC App
reconfigurations.
[MEC-Modification-05] The MEPM SHOULD perform fault detection and self-healing based on
monitoring data.
[MEC-Modification-06] The MEPM SHOULD perform live upgrade to another MEC App software
version on MEO or back-office demand.

8.1.2.7 Mobility

[MEC-Mobility-01] The MEC System MUST be able to maintain service continuity for moving UEs,
ensuring the MEC Apps “follow” them.
[MEC-Mobility-02] The MEO SHOULD determine the best location for MEC Apps relocation based
on App requirements
[MEC-Mobility-03] The MEO SHOULD have to move MEC App instances between mobile edge hosts
in order to continue to satisfy the requirements of the MEC App. NOTE: Requirements of the MEC
App can include latency, compute resources, storage resources, etc.
[MEC-Mobility-04] To perform full or partial MEC App relocation, the MEPM MAY
e Option 1 — Perform a resources live migration of MEC App and perform any required
reconfiguration.
e Option 2 — Create and configure a new MEC App in the new location and terminate the MEC
App in the old location.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 63 of 88

[MEC-Mobility-05] The MEO SHOULD relocate a MEC App based on relocation requests coming
from UE/MEP triggers or OSS requests, to another mobile edge host, fulfilling the requirements for
that MEC App.

[MEC-Mobility-06] The MEO MUST interact with old and new VIMs to perform MEC App relocation.

[MEC-Mobility-07] The MEO MUST perform the MEC App instantiation before starting the MEC App
state relocation.

[MEC-Mobility-08] The MEO MUST allow the interaction and state synchronization between the two
MEC App instances: on the source and target mobile edge hosts.

[MEC-Mobility-09] The MEO MUST support and supervise MEC App instance relocation between a

mobile edge host and an external cloud environment.

8.1.2.8 Termination

[MEC-Termination-01] The MEPM MUST terminate on-demand existing MEC App instances on MEO
request, according to the orchestration rules.
[MEC-Modification-02] The MEPM MUST dispose the infrastructural resources of the MEC App
instance

e Option 1 — Directly to the VIM, notifying the MEO

e Option 2 -Via MEO
[MEC-Termination-03] The VIM MUST validate and authorize the MEPM requests to dispose
resources (Option 1).
[MEC-Termination-04] The MEO MUST validate and authorize the MEPM requests to dispose
resources (Option 2).
[MEC-Termination-05] The VIM MUST validate and authorize the MEO requests to dispose
resources (Option 2).
[MEC-Termination-06] The MEPM MUST remove from the MEC App Instances repository the MEC
App instance record once the disposal is completed.

e Option 1 - Directly on the MEC App Instances repository and notifying the MEO

e QOption 2 —Via MEO
[MEC-Termination-07] The MEPM SHOULD access the MEC App instance to perform termination
procedures.

[MEC-Termination-08] The MEO MUST dispose on-demand existing MEC App instances on OSS
request.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 64 of 88

8.2Detailed Orchestration Flows

8.2.1 NFV

This section intends to identify the Management and Orchestration flows on NFV environments.
These flows, pictures and text, are originally retrieved from [ETSI-NFV-MANO].

8.2.1.1VNF On-boarding

The following Figure depicts the VNF on-boarding flow.

VIM

Sender NVF Orchestrator .) .
—_— _— Catalog (Image Repositorv)

1. On-board VNF Package |
-

2. Validate VNFD

3. Natify Catalog -’J

4. Upload image(s)

6. Ack VNI Package On-boarding

>
-
|
|

|
i
5. Ack image(s) upload |
|
|

Figure 21: Orchestration Flows: VNF On-boarding [ETSI-NFV-MANOQO].

See [ETSI-NFV-MANO] for the main steps for VNF on-boarding,

8.2.1.2VNF Instantiation

The following Figure depicts the VNF instantiation.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 65 of 88

=n

VNF Manager

[NFV Orchestrator]

VIM

1. Instantiate VNF (WNF)

LY

Cd

2. Instantiate VNF (VNF)

€

3. Grant Lifecycle Operation (VNF, Ir1sl>‘c.

ntiation.....)

4. Check free resources
are available (e.g. Fool,
Resource type, CPU,
Memory, etc.), oplionally
reserve towards VIM.

5. (opt) Create Resource Heserviion

7 ACK (VIM Id,...)

6. Result of Reservation

11. Notify VINF Instantiated

10. Configure VNF (deployment Specif]

c Parameters)

12. Add VNF as managed device

13. Configure WVNF (App. Specif

c Parameters)

14. Notify VNF Instantiated

15. Map VNF to VIM and
Resource Pool

Figure 22: Orchestration Flows: VNF Instantiation [ETSI-NFV-MANQ].

See [ETSI-NFV-MANO] for the main steps for VNF Instantiation.

8.2.1.3VNF Scalin

The following Figure depicts the

g Out

VNF scale-out flow.

SUPERFLUIDITY Del. 16.1: Initial desi

gn of control network

Page 66 of 88

‘ EM | ‘ VNF Managerl [NFV Orchestratcr] ViM

1. Notify performance measufement results
e — — _rfy_p _____ e — — — VNF

2. Expansionrequired

3. Grant Lifecycle Operation (VNF, [Scaling....)

4. Check free resources
are available (e.g. Pool,
Resource type, CPU,
Memaory, etc.), optionally
reserve towards VIM.

=

5. (opt) Create Resource Resenratigl

6. Result of Reservation
7. ACK (Scale VNF) —————————

8. Allocate resources

S et e

10. Configure VNF (deployment Spgcific Parameters
’ 11. Notify VNF updated VNF

12. Update VNF as managed device

1

13. Configure VNF {App. Specific Parameters)

A 4

14. Notify VNF Updated

15. Map VNF to VIM
and Resource Pool

Figure 23: Orchestration Flows: VNF Scale-out [ETSI-NFV-MANO].

See [ETSI-NFV-MANO] for the main steps for VNF scale-out.

8.2.1.4VNF Scaling In

The following Figure depicts the VNF scale-in flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 67 of 88

[EM] [VNF] VNF Manager [NFV Orchestrator] VIM

1. Notify performancg measurement results

2 Contraction required

3 _Grant Lifecycle Operation QJN F. Scalein....)

-

4 Scaling decision

5 ACK (Scale VNF)

6 Graceful termination of VNF component

| 7 Release resource
>
8 ACK
e e e e e e e —
9. Notify VNF update
r_ 10. Notify VNF update = —=—=—=— =— — —
11 Update VIM and
12. Update managed device resource pool map

Figure 24: Orchestration Flows: VNF Scale-in [ETSI-NFV-MANOQO].

See [ETSI-NFV-MANOQ] for the main steps for VNF scale-in.

8.2.1.5VNF Termination

The following Figure depicts the VNF termination flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 68 of 88

Sender NFV Orchestrator

1 Terminate VNF instance

2 - Validate request

3 - Terminate VNF instance

Virtualized Infrastructure
WNF Manager -_— Y.
Manager

5 - Ack of WNF termination

6 - Resource (compute, storag:

4 - Terminate VNF instance

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, and network) deletion I

10 - Ack end of YNF instance termination

7 - Delete internal connectivity netwark

& - Delete VMs

—_———— e = . — —

9 - Ack completion of resource deletion

—— — — — ———— e ——— o — —

Figure 25: Orchestration Flows: VNF Termination [ETSI-NFV-MANQ].

See [ETSI-NFV-MANO] for the main steps for VNF termination.

8.2.1.6NS On-boarding

The following Figure depicts the VNF on-boarding flow.

NF

rc

pstrato atal

1- On-board Network Service Descriptor

T

4- Ack Network Service Descriptor on-boarding

> 2- Validate Network Service Descriptor

3. Notify catalog

S

Figure 26: Orchestration Flows: NS On-boarding [ETSI-NFV-MANOQO].

See [ETSI-NFV-MANO] for the main steps for NS on-boarding.

8.2.1.7NS Instantiation

The following Figure depicts the NS instantiation flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 69 of 88

1- Instantiate Network Senace

2- Validate request

3- Check if VNF Instance exsts

3- Response on VNF check

Repeat for each VNF
in the Network Service.
Require to find the VNF

r

Return error if resources not available

e e e e e e] and instantiate it if it dops not exist
| T
4a- (optional) Check network resource availabdity & reservjtion
I 3 &
| H
The complete step 4 is optional, as well as step 5 | ab- Check resource availability & reservation
but when executed all sub-steps should be done 4Ac- Result of reservation |
e oo o o e o -

> 9. Instantiate new VNF when needed

Calling flow of
7.2 VNF Instantiation

10~ Connect VNFs to connectivity network

|
12- Ack completion of VNFs connection

11- Connect VNFs to network

4

-
|
|

14- Ack end of Network Service instantiation

Figure 27: Orchestration Flows: NS Instantiation [ETSI-NFV-MANOQ].

See [ETSI-NFV-MANO] for the main steps for NS instantiation.

8.2.1.8NS Scaling Out

The following Figure depicts the NS scale-out flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 70 of 88

NFVO VNFM VIM

Sender

1.NS Scale out request >

_ﬂ> 2. Validate request
3a.(Optional) Feasibility
— check on the scaling of —=
the relevant VNFS i
> 3b. Process request
L
3c.Return updated
scaling data plans

4. Analyze the
requirement to all
il VNF instances in NS

5. Scale out VNF Instance (Calling flow of Annex B.4 VNF Instance scaling)

6. Instantiate new VNFs (Calling flow of Annex B.2 VNT instantiation)

7a. Changed resource(VNFFG and VL) .
allocation and interconnection setup i .7h' Modify or .cmale new
——__ inter connectivity between
-« VNFs presecribed in the
new flavor of the N§

7¢. Return result of the creation and modification of
the interconnections between YNFs

. 8.Ack end of NS scaling out

Figure 28: Orchestration Flows: NS Scale-out [ETSI-NFV-MANO].

See [ETSI-NFV-MANO] for the main steps for NS scale-out.

8.2.1.9NS Scaling In

The following Figure depicts the NS scale-in flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 71 of 88

Sender

NFVO VNFM VIM

1.NS Scale in request

B 2, Validate request
4__/
3a.(Optional) Feasibility
— check on the scaling of —
the relevant VNFS

> 3b. Process request
—
3c.Return updated
scaling data plans

S 4. Analyze the
requirement to all
- VNF instances in NS

5. Scale in VNI Instance (Calling flow of Annex B.4 VNF Instance scaling)

6. Terminate VNF Instances (Calling flow of Annex B.7 VNF instance termination)

8.Ack end of N§ scaling in

7a. Changed resource(VNFFG and VL)
allocation and interconnection setup

7¢. Return result of the deletion and modification of

the interconnections between VNFs

-l
-

-

Figure 29: Orchestration Flows: NS Scale-in [ETSI-NFV-MANO].

See [ETSI-NFV-MANO] for the main steps for NS scale-in.

8.2.1.10

NS Termination

The following Figure depicts the NS termination flow.

7b. Modify or delete inter

— connectivity between

-~ VNFs presecribed in the
new flavor of the NS

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 72 of 88

/4
N
Virtualized Infrastructure
Sender NFV Orchestrator VNF Manager Network Manager Manager

1- Terminate Network Senice instance

> 2- Validate request

3- Terminate required VNFs

4- Terminate VNFs

T
|
|
|
|
|
|
|
!
|
|
|
5- Ack of VNF termination :

6- Nelwort:connecnww resource deletion

|

|

|

L

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| T <
! ! 7- Delete connectivity network
: 8- Ack comlel(mn of networks resource deletion
| f——m | e
|

|

|

|

|

|

|

|

|

|

|

|

|

1

8

x

2

3

2

g

=X

g

~3

8
]

:

|

—]

| |

| |

| |

1- Ack end of Network Service instance termination’ | |
Ll | |

| |

1 1

Figure 30: Orchestration Flows: NS Termination [ETSI-NFV-MANO].

See [ETSI-NFV-MANO] for the main steps for NS termination.

8.2.2 MEC

This section intends to identify the Management and Orchestration flows on MEC environments.

8.2.2.1 MEC App On-boarding

The following Figure depicts the MEC App on-boarding flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 73 of 88

g

* oy *

. ME Orchestrator Wk
OS5, App Provider, etc. - MEC App Catalogue -
: 1. MEC App Onboard request ‘_: i E
E ! 2. Checks MEC App images and descriptor E E
\ 1 3. (Optional) Test and validation of MEC App | |
| | 4. Store MEC App o |
: \ 5. Copy MEC App images to target WIMs : ,_L:
:__, 6. MEC App OnBoard ack | : |

0SS, App Pravider, etc. ME Orchestrator MEC App Catalogue |,

Figure 31: Orchestration Flows: MEC App On-boarding.

The main steps for MEC App on-boarding are:

1 MEO is requested to on-board a MEC App Package, which includes the MEC App Descriptor,
as well as a set of images. The sources of this request can be OSSs or MEC App providers.

2 MEO checks the MEC App Descriptor and images, namely:
a) Validating the correctness of the MEC App Descriptor (format, mandatory items, etc.)
b) Validating the integrity and authenticity of the images (format, checksum).

3 Optionally, MEO may test the MEC App, e.g. by deploying (in a test VIM) the images using
the Descriptor’s definitions.

4 MEO stores the images and the Descriptor in the MEC App Catalogue.
Images are copied to all VIMs (edges) where this MEC App can potentially be deployed.
MEO acknowledges the on-boarding request to the entity who issued the request (links to
step 1).

8.2.2.2 MEC App Instantiation

The following Figure depicts the MEC App instantiation flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 74 of 88

0SS, LCM Praxy, MEO, ME Orchestratar ME Platfarm Manager W
MEP Manager, etc.

1. MEC App Instantiation reg

2. MEC App Instantiation req

|
i
I
k-
=1
|
I
F
!

alt__/ | [via MEPM]

:_, 3. Grant LCM operation req

|
i
I
|
|
I
i
!
]
|
|
|
[[
|
|
i
I
|
i
I
|
|
I
i

i 4. Approval

i 5. Check resources availability

6. Resenve required resources req

7. Resources reservation ack

@ A

. Grant LCM operation ack

.
=

9. Create resources reg

A

_10. Create resources ac

-

11. Create resources notification

-
-

[via MEO]
3. LCM operation req

4.

Appraoval

1 5. LCM operation ack

\J

. Check resources availability

8. Create resources req

9. Create resources ack

0. Create resources ack

Y

»| MEC App l

1
i
1
1
i
i
1
i
L
1
i
[}
1
i
]
I
i
1
i
1
i
i
1
i
1
]
i
1
6. Create resources req \
i
1
i
i
1
i
i
T
i
i
T
i
1
1
T
1
i
]
1
i
i
1
i
i
!
i
1
1
i

I
< :
| I
_14. MEC App Instantiation ack | \
o i i
_15. MEC App Instantiation ack | | \
- i i i
0SS, LCM Proxy, MEO, ME Orchestrator ME Platform Manager vim | | MEC App
MEP Manager, etc.

Figure 32: Orchestration Flows: MEC App Instantiation.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 75 of 88

The main steps for MEC App instantiation are:

1 MEO is requested to instantiate a MEC App (previously on-boarded). Sources of this request
can be OSSs, LCM Proxy, MEQ itself (internal decision) or MEP Manager (MEPM).

2 MEO finds the MEPM in change for this MEC App on the target edge and requests to it the
MEC App instantiation.

Option 1 (Resource management performed by MEPM directly to the VIM)

3 MEPM requests granting to MEO for the instantiation of a MEC App according to the MEC
App Descriptor (CPU, Memory, IP, etc.). This will both authorize the instantiation operation
and reserve resources.

MEO approves MEPM requested instantiation operation.

5 MEO checks resources availability, considering the grant request and the available resources
on its database.

6 MEO performs the resources reservation for MEC App instantiation in the appropriated
VIM.

VIM acknowledges the resources reservation (links to step 6).
MEO acknowledges to MEPM the request for granting both authorization and resources
(links to step 3).

9 MEPM requests to VIM the resources, previously granted, for MEC App instantiation.

10 VIM acknowledges MEPM for the creation of resources (links to step 9).

11 MEPM notifies MEO, informing that the reserved resources were created.

Option 2 (Resource management performed via MEO on behalf of VIM)

3 MEPM requests to MEO an authorization to instantiate MEC App according to the MEC App
Descriptor (CPU, Memory, IP, etc.).
MEO approves to MEPM the requested instantiation operation.
MEO acknowledges to MEPM for MEC App instantiation (links to step 3).
MEPM requests to MEO the creation of the required resources. MEO acts as a proxy to the
appropriate VIM, asking for resources on MEPM behalf.

7 MEO checks resources availability on its resources database.

8 MEO requests to VIM the creation of the required resources (on MEPM’s behalf).

9 VIM acknowledges MEOQ for the creation of resources (links to step 8).

10 MEO acknowledges MEPM for the creation of resources (links to step 6).

End Options

12 Once MEC App resources are created and VDUs are up and running, MEC App is requested
to configure deployment specific parameters.

13 MEC App acknowledges for the configuration of deployment specific parameters (links to
step 12).

14 MEPM acknowledges the MEC App instantiation to MEO (links to step 2).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 76 of 88

15 MEO acknowledges the MEC App instantiation to the initial source, which can be 0OSSs, LCM
Proxy, MEQ itself (internal decision) or MEPM (links to step 1).

8.2.2.3MEC App Scaling Out

The following Figure depicts the MEC App scale-out flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 77 of 88

053, MEO, ME Orchestrator ME Platfarm Manager WM MEC App
MEP Man'fzger, etc.

|
1. Scale out trigger

Y

2. Scaling-out Decision

alt [via MEPM]

3. Grant LCM operation req

4.

Approval

"5, Check resources availahility

6. Reserve resources req

Y

7. Reserve resources ack

8.

Grant LCM operation ack

9. Create resources req

10. Create resources ac

-
-

11. Create resources notification

A

[via MEO]
3. LCM operation req

-
-

4. Approval

i

5. LCM operation ack

6. Create resources req

i
i
]
i
<
7

Check resources availability

8. Create resources req

Y

I
i
i
i
i
[}
i
[}
i
|
i
i
i
]
i
[}
i
[}
i
[}
i
i
i
i
[}
i
[}
[}
[}
i
i
i
e
k|
i
[}
i
[}
[}
i
i
i
[}
i
[}
i
[}
i
i
i
i
]
i
[}
i
[}
i
[}
i
i
i
i
[}
i

|

I

L

I

' 9. Create resources ack
-

|

|

'

0. Create resources ack

I
112, MEC App reconfiguration reg

Y
=

_ 14. Scale out completed
| I

0SS, MEO
' ' ME Crchestratar ME Platfarm Manager W MEC A
MEP Manager, etc. g PP

I

I i i
1 13. MEC App reconfiguration ack !
I l l
1 | |
I i i

Figure 33: Orchestration Flows: MEC App Scale-out.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 78 of 88

The main steps for MEC App scale-out are:

1

MEPM is triggered (e.g. monitory) by an external source (OSSs, MEO or MEPM itself -
internal decision), indicating a service degradation (e.g. increasing latency), or the need for
more resources (e.g. high CPU utilization).

MEPM decides to perform a scale-out based on the trigger received, expanding the MEC

App.

Option 1 (Resource management performed by MEPM directly to the VIM)

3

9

MEPM requests granting to MEO for the scale-out of a MEC App according to MEC App
Descriptor (CPU, Memory, IP, etc.). This will both authorize the scale-out operation and
reserve additional resources.

MEOQ approves the MEPM request for the scale-out operation.

MEO checks resources availability, considering the request and the available resources on its
resources database.

MEO performs the reservation of additional resources to scale-out the MEC App in the
appropriate VIM.

VIM acknowledges the reservation of additional resources (links to step 6).

MEO acknowledges to MEPM the request for authorization and additional resources (links
to step 3).

MEPM requests to the VIM additional resources, previously granted, for MEC App scale-out.

10 VIM acknowledges MEPM for the creation of additional resources (links to step 9).

11 MEPM notifies MEO, informing that the reserved additional resources were created.

Option 2 (Resource management performed via MEO on behalf of VIM)

3

7
8
9

MEPM requests to the MEO authorization to scale-out the MEC App according to the MEC
App Descriptor (CPU, Memory, IP, etc.).

MEO approves the MEPM request to perform the scale-out operation.

MEO acknowledges the MEPM request to perform the MEC App scale-out (links to step 3).
MEPM requests to MEO the creation of additional resources. MEO acts as a proxy to the
appropriate VIM, asking for additional resources on MEPM'’s behalf.

MEO checks resources availability on its resources database.

MEO requests to VIM the creation of additional resources (on MEPM’s behalf).

VIM acknowledges MEO for the creation of additional resources (links to step 8).

10 MEO acknowledges MEPM for the creation of additional resources (links to step 6).

End Options

12 Once MEC App additional resources are created and VDUs are up and running, MEC App is

requested by MEPM to reconfigure deployment specific parameters, in order to expand

capacity.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 79 of 88

13 MEC App acknowledges MEPM for the reconfiguration of deployment specific parameters
(links to step 12).

14 MEPM acknowledges the MEC App scale-out to the MEO (links to step 2).

15 MEO acknowledges the MEC App scale-out to the initial source, which can be OSSs, MEO or
MEPM itself (links to step 1).

8.2.2.4MEC App Scaling In

The following Figure depicts the MEC App scale-in flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 80 of 88

* *
gl e
* oy *

0SS, MEO, ME Orchestrator ME Platfarm Manager vIM | | MEC App
MEP Man’flger, efe. | | | |
| | | | |
i1, Scale in trigger | L | |
| | | | |
! ! 1 2. Scaling-in Decision ! !
I I I I
I | | | |
l alt__/ ivia MePM] i i i
i :__, 3. Grant LCM operation req : i i
i : 4. Approval i i i
| | | |
I I | I I
! ' 5. Grant LCM operation ack . | |
i i - i i
! ! 6. MEC App reconfiguration feg }:
| | | | |
! ! :{ 7. MEC App reconfiguratign ack !
| | | | |
! ! | B. Release resources reg }: |
| | | | |
! ! | _ 9. Release resources ack | |
i i i i i
| | 10. Release resources notification | | |
i L ! i I
! [via MEO] | : :
! i 3. LCM operation reg [| |
I I | I I
! 4. Approval ! | |
I | I I
I I | I I
| | 5. LCM operation ack ::: | |
I I | I I
! ! | 6. MEC App reconfiguration feq :___:
I I | I I
| | :__, 7. MEC App reconfiguratign ack |
i i (I i i
| | B. Release resources req : | |
i (e I i i
: : 9. Release resources req : .‘: :
| 1 [L |
| :__, 10. Release resources ack ! : :
| [[1 |
| | 11. Release resources ack _‘_: : :
l : I l l
L{ 12. Scale in compleed | | |
I I | I I
i

0S5, MEO, ME Orchestratar ME Platform Manager WM MEC App

MEP Manager, etc.

Figure 34: Orchestration Flows: MEC App Scale-in.

The main steps for MEC App scale-in are:

SUPERFLUIDITY Del. 16.1: Initial design of control network

Page 81 of 88

1

MEPM s triggered (e.g. monitory) by an external source (OSSs, MEO or MEPM itself -
internal decision), indicating an over-provisioning of the MEC App (e.g. very low latency), or
low resources utilization (e.g. very low CPU utilization).

MEPM decides to perform a scale-in based on the trigger received, contracting the MEC

App.

Option 1 (Resource management performed by MEPM directly to the VIM)

3

8
9

MEPM requests grant to MEO to scale-in a MEC App according to MEC App Descriptor (CPU,
Memory, IP, etc.). This will authorize the scale-in operation.

MEO approves the MEPM scale-in operation.

MEO acknowledges to MEPM the request for authorization and additional resources (links
to step 3).

Before some MEC App resources can be removed, the MEPM requests to the MEC App to
reconfigure deployment specific parameters, in order to contract the MEC App capacity.
MEC App acknowledges MEPM for the reconfiguration of deployment specific parameters
(links to step 6).

MEPM requests VIM to dispose unused resources from the MEC App.

VIM acknowledges MEPM for the disposal of unused resources (links to step 8).

10 MEPM notifies MEOQ, informing that the disposal of unused resources was done.

Option 2 (Resource management performed via MEO on behalf of VIM)

3

9

MEPM requests to MEO authorization to scale-in the MEC App according to the MEC App
Descriptor (CPU, Memory, IP, etc.).

MEQO approves to MEPM the scale-in operation.

MEO acknowledges to MEPM the MEC App scale-in (links to step 3).

Before some MEC App resources can be removed, MEC App is requested by MEPM to
reconfigure deployment specific parameters without those resources, in order to contract
the MEC App capacity.

MEC App acknowledges MEPM for the reconfiguration of deployment specific parameters
(links to step 6).

MEPM requests to MEO the removal of unused resources. MEO acts as a proxy to the
appropriate VIM, asking for resources disposal on MEPM’s behalf.

MEO requests to VIM the removal of unused resources (on MEPM'’s behalf).

10 VIM acknowledges MEO for the removal of unused resources (links to step 9).

11 MEO acknowledges MEPM for the removal of unused resources (links to step 8).

End Options

12 MEO acknowledges the MEC App scale-out operation to the initial source, which can be

0OSSs, MEO or MEPM itself (links to step 1).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 82 of 88

8.2.2.5MEC App Relocation

The following Figure depicts the MEC App relocation flow.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 83 of 88

033, LCM Praxy, MEO, ME Orchestrator | l Source ME Platfarm Managerl I Source VIM I I Target ME Platform Manager I I Target VIM I \ Source MEC App]
MEP Mane‘iger‘ etc

| 1. Relocate MEC App rag
e —

1 2. Instantiate Target MEC App req

.
alt :[uia MEPMTarget]

3. Grant LCM operation raq

i 4. Approval

15, Check resources availability

6. Reserve resources req

7. Resene resources ack

3. Grant LCM operation ack

9. Create resources req

I |
' 10. Create resources ack |

-
i i
11. Create resources , |
i :
: |
3. LCM operation req ! |
i i i i i
14, Approval ! i H |
] : : : :
| 5. LCM operation ack . i | |
. | \ \ I
_ 6. Create resources req | | \ |
i T T i i
| 7. Check resources availability | ' | |
; | : : |
|8, Craate resources req | i i |
|_ 9, Crsate rssourcss ack | | | i
110, Creats rssources ack | | | |
: } : : 12. Configure Target MEC Abp req Target MEC App
I I I i T I
i i i i i
I I I I I
S ot ot |
; | ; ; | T ;
! | H ' 13. Configure Targst MEC App ack i |
i i i i i i i
1 14. Target MEC App instantiation ack | i | | H |
i i i i i i i
1 15, Source MEC App termination req _| | H | i |
i | i i i i i

alt 1 [via MEPM] |
' I
+_ 16. Grant LCM aoperation req !
'
v 17, Approval

18. Grant LCM operation ack

1
I
|
\
I
|
\
|
I
'
I

19. Stop Source MEC App ref
I
|
\
|
I

Gracefull Source MEC App termination bn
T

20. Stop Source MEC App 4|:k
21. Release resources req i

22. Release resources ack i
23 Release resources notification :

16. LCM operation req

17. Approval
-

18. LCM operation ack

19. Stop Source MEC App re

Gracefull Source MEC App termination bn
T

S . A

20. Stop Source MEC App ack |
T i
21. Release resources req : :
' i
22. Release resources reg | |
d i
23 Release resources ack] |
l i
24 Release resources ack i |
I |
' i ' ' i '
! ! i i ! i Source MEC App disposal
' i ' ' i '
| : | | : X |
1 25. Source MEC App termination ack | | | i \ i
I | ' ' I ' I
26. Relocate MEC App ack | | | , | , |
g nEorate VEL Ppp Atk
i | I ' ' I ' I
| . L L . L .
Osjé;in!:;g;yr‘ ':EO‘ ME Orchestrator I l Source ME Platform Managerl I Source VIV I I Target ME Platform Manager I I Target VIM I l Source MEC App] l Target MEC App]

Figure 35: Orchestration Flows: MEC App Relocation.

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 84 of 88

The main steps for MEC App relocation are:

Note 1: It is assumed a strategy of instantiation of the target MEC App instance followed by the

termination of the source MEC App. Other options (e.g. live migration) are also possible.

Note 2: It is assumed a relocation between two regions managed by different VIMs.

1

MEO is requested to relocate a MEC App (previously instantiated). Initial sources of this
request can be 0SSs, LCM Proxy, MEO itself (internal decision) or MEP Manager (MEPM).

Target Instantiation Phase

2

MEO finds the MEPM in change for this MEC App on the target edge and requests the target
MEC App instantiation.

Option 1 (Resource management performed by MEPM directly to the VIM)

3

MEPM requests to the MEO the instantiation of the target MEC App according to MEC App
Descriptor (CPU, Memory, IP, etc.). This will both authorize the instantiation operation and
reserve resources.

MEO approves the MEPM instantiation operation.

MEO checks resources availability, considering the request and the available resources on its
resources database.

MEQO performs the resources reservation for target MEC App instantiation in the
appropriate target VIM.

Target VIM acknowledges the resources reservation (links to step 6).

MEO acknowledges to MEPM the request for authorization and resources (links to step 3).
MEPM requests to target VIM the creation of resources, previously granted, for target MEC
App instantiation.

10 Target VIM acknowledges MEPM for the creation of resources (links to step 9).

11 MEPM notifies MEO, informing that the reserved resources were created.

Option 2 (Resource management performed via MEO on behalf of VIM)

3

7
8
9

MEPM requests to MEO authorization to instantiate the target MEC App according to the
MEC App Descriptor (CPU, Memory, IP, etc.).

MEO approves to MEPM the instantiation operation.

MEO acknowledges to MEPM for target MEC App instantiation (links to step 3).

MEPM requests to MEO the creation of the resources. MEO acts as a proxy to the
appropriate target VIM, asking for resources on MEPM’s behalf.

MEO checks resources availability on its resource database.

MEO requests to the target VIM the creation of resources (on MEPM’s behalf).

Target VIM acknowledges MEO for the creation of resources (links to step 8).

10 MEO acknowledges MEPM for the creation of resources (links to step 6).

End Options

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 85 of 88

12 Once target MEC App resources are created and VDUs are up and running, target MEC App
is requested to configure deployment specific parameters.
<Source and target MEC Apps should sync their states if needed (MEC App dependent). This is
a MEC App specific procedure>

13 Target MEC App acknowledges for the configuration of deployment specific parameters
(links to step 12).

14 MEPM acknowledges the target MEC App instantiation to MEO (links to step 2).

Source Termination Phase

15 MEO finds the MEPM in charge for the source MEC App on the edge it is running, and
requests the source MEC App termination.

Option 1 (Resource management performed by MEPM directly to the VIM)

16 MEPM requests to MEO for the termination of the source MEC App. This will authorize the
termination operation.

17 MEQ approves the MEPM termination operation.

18 MEO acknowledges the MEPM to perform the termination operation (links to step 16).

19 MEPM stops gracefully the source MEC App service before dispose resources.

20 MEC App acknowledges the service stop to MEPM (see step 19).

21 MEPM requests the source VIM to dispose resources.

22 Source VIM acknowledges MEPM for the disposal of resources (see step 21).

23 MEPM notifies MEO, informing that the resources were disposed.

Option 2 (Resource management performed via MEO on behalf of VIM)

15 MEPM requests to MEO authorization to terminate source MEC App. This will authorize the
termination operation.

16 MEO approves MEPM the requested termination operation.

17 MEO acknowledges to MEPM for source MEC App instantiation (links to step 16).

18 MEPM stops gracefully the source MEC App service before dispose resources.

19 Source MEC App acknowledges the service stop to MEPM (see step 19).

20 MEPM requests to MEO the disposal of source MEC App resources.

21 MEO requests to source VIM the disposal of source MEC App resources (on MEPM’s behalf).

22 Source VIM acknowledges MEO for the disposal of resources (links to step 21).

23 MEO acknowledges MEPM for the disposal of resources (links to step 20).

End Options

24 Once the source MEC App resources are released, MEPM acknowledges the source MEC
App termination to MEO (links to step 15).

25 MEO acknowledges the MEC App relocation to the initial source, which can be OSSs, LCM
Proxy, MEQ itself (internal decision) or MEP Manager (MEPM) (links to step 1).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 86 of 88

8.2.2.6 MEC App Termination

The following Figure depicts the MEC App termination flow.

©SS, LCM Proxy, MEO, WE Qrchestratar ‘ ME Platfarm Manager | Vi | | MEC App
MEP Manager, etc.

i 1. MEC App termination req !

=

| 2. MEC App termination req

I I

alt J/ | [via MEPM] ' ' '
_ 3. Grant LCM operation req X X X

i 4. Approval i X !

i 5. Grant LCM operation ack ‘_: | |

| 6. Stop MEC App req

i i i i| Gracefull MEC App termination H
:_,\ 7. Stop MEC App ack | i
E : 8. Release resources req ‘;: E
E :{ 9. Release resources ack | E
51 10. Release resources notification : E E
[via MEO] .‘ | i i
e 3. LCM operation req ! ! :
1 4. Approval E E E
| 5. LCM operation ack ‘;: E E
E 6. Stop MEC App | "_E

|| Gracefull MEC App termination H

_ 7. MEC App stopped

8. Release resources req

9.

Release resources req

S NN A S

_ 10. Release resources ack
<

| 11, Release resources ack

\J

I
i| MEC App disposal 5

_ 12. MEC App termination ack

_ 13. MEC App termination ack | E

0SS, LCM Proxy, MEC, ME Orchestrator ‘ ME Platform Manager | MEC App
MEP Manager, etc.

Figure 36: Orchestration Flows: MEC App Termination.

The main steps for MEC App termination are:

1 MEO is requested to terminate a MEC App (previously instantiated). Initial sources of this
request can be OSSs, LCM Proxy, MEQ itself (internal decision) or MEP Manager (MEPM).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 87 of 88

2

MEO finds the MEPM in charge for this MEC App on the edge it is running and requests the
MEC App termination.

Option 1 (Resource management performed by MEPM directly to the VIM)

3

O 00 N O U b~

MEPM requests grants to the MEO for the termination of a MEC App. This will authorize the
termination operation.

MEO approves the MEPM termination operation.

MEO acknowledges the MEPM to perform the termination operation (links to step 3).
MEPM stops gracefully the MEC App service before dispose resources.

MEC App acknowledges the service stop to MEPM (see step 6).

MEPM requests the VIM to dispose resources.

VIM acknowledges MEPM for the disposal of resources (see step 8).

10 MEPM notifies MEO, informing that the resources were disposed.

Option 2 (Resource management performed via MEO on behalf of VIM)

3

O 00 N oo un b~

MEPM requests to the MEQO authorization to terminate the MEC App. This will authorize the
termination operation.

MEO approves to MEPM the termination operation.

MEOQO acknowledges to MEPM for MEC App termination (links to step 3).

MEPM stops gracefully the MEC App service before dispose resources.

MEC App acknowledges the service stop to the MEPM (see step 6).

MEPM requests to MEO the disposal of MEC App resources.

MEO requests to VIM the disposal of MEC App resources (on MEPM'’s behalf).

10 VIM acknowledges MEO for the disposal of resources (links to step 9).

11 MEO acknowledges MEPM for the disposal of resources (links to step 8).

End Options

12 Once the MEC App resources are released, MEPM acknowledges the MEC App termination

to MEO (links to step 2).

13 MEO acknowledges the MEC App termination to the initial source, which can be 0OSSs, LCM

Proxy, MEQ itself (internal decision) or MEP Manager (MEPM) (links to step 1).

SUPERFLUIDITY Del. 16.1: Initial design of control network Page 88 of 88

